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Motivation: hyperbolic 3-manifolds

Let H® denote a 3-dimensional hyperbolic space (Lobachevskii space L3
in Russia).

Let I be a discrete subgroup of Isom(H?3) acting without fixed points.
The quotient space H3/T is a hyperbolic 3-manifold.

Klein, 1929, “Non-Euclidean Geometry”: Examples of compact
hyperbolic 3-manifolds are unknown.

First examples of hyperbolic 3-manifolds of finite volume:

e Gieseking, 1914: non-compact, non-orientable.
e Lobell, 1931: compact, orientable.

e Weber, Seifert, 1933: compact, orientable “dodecahedral
hyperbolic space .



Aim of the talk

We will discuss the construction of hyperbolic 3-manifolds from
right-angled polyhedra.

e Start with a bounded right-angled polyhedron R in HS3.
e Which combinatorial polyhedra can be realized as right-angled in H3?
e What is a structure of the set of right-angled polyhedra?

e Consider the group G generated by reflections in faces of R.

e Choose a torsion-free subgroup I of G.

e How to find a torsion-free subgroup? Use colourings of a polyhedron!
e Do different colourings lead to different manifolds?



Outline of the talk

1. The set of all bounded right-angled hyperbolic polyhedra
2. Constructing manifolds from Pogorelov polyhedra
3. The set of all ideal right-angled hyperbolic polyhedra

4. Constructing manifolds from ideal right-angled polyhedra



The set of all bounded
right-angled hyperbolic polyhedra



Uniqueness of acute-angled polyhedra in H”"

Let H” denote an n-dimensional hyperbolic space.

Andreev, 1970: Any bounded acute-angled (all dihedral angles are at
most 7w/2) polyhedron in H" is uniquely determined by its combinatorial

type and dihedral angles.

We will discuss two classes of acute-angled polyhedra:

e Coxeter polyhedra, with dihedral angles of the form 7 /k, k > 2.
e Right-angled polyhedra, with all dihedral angles 7/2.



Bounded right-angled polyhedra in I3

Pogorelov, 1967: A polyhedron P can be realized in H® as a bounded
right-angled polyhedron if and only if

(1) any vertex is incident to 3 edges (polyhedron is said to be simple);
(2) any face has at least 5 sides;

(3) if a simple closed circuit on the surface of the polyhedron separates
two faces (prismatic circuit), then it intersects at least 5 edges;

(4) P can be realized in H3 with dihedral angled less than 7/2.
Andreev, 1970: Condition (4) is not necessary.

Conditions (1) and (3) imply (2).



Conditions (1) and (2) do not imply (3)

The following polyhedron satisfies (1) and (2), but not (3):

R
N&%

There is a closed circuit which separates two 6-gonal faces (top and
bottom), but intersects only 4 edges.



Pogorelov polyhedra

Def. A combinatorial polyhedron is Pogorelov polyhedron if

e any vertex is incident to 3 edges (simple polyhedron);

e any prismatic circuit intersects at least 5 edges.

Russian and Ukrainian academician Aleksei Vasil'evich Pogorelov [1919-2002].

A combinatorial polyhedron can be realised as a bounded right-angled
polyhedron in H? if and only if it is Pogorelov polyhedron.



Fullerenes are Pogorelov polyhedra

If simple polyhedron has only 5- and 6-gonal faces, it is called fullerene.

Dosli¢, 2003; Buchshaber — Erokhovets, 2015: If P is a fullerene,
then any prismatic circuit intersects at least 5 edges.

Cor. Fullerenes are Pogorelov polyhedra.



A right-angled dodecahedron in 1?3

Combinatorially simplest Pogorelov polyhedron is a dodecahedron.



Tiling of H by right-angled dodecahedra, |
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Tiling of H® by right-angled dodecahedra, I
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Tiling of f * by right-angled dodecahedra, 11l
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Tiling of f H* by right-angled dodecahedra, IV

+ Images are due to Vladimir Bulatov, www.bulatov.org
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An infinite subfamily of the set of Pogorelov polyhedra

V, 1987:: For any integer n > 5 define a right-angled (2n + 2)-hedron
L(n). Polyhedra L(5) and L(6) look as following:

Polyhedra L(n) are said to be Lcbelll polyhedra.

German mathematician Frank Richard Lobell [1893-1964].
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Two moves for bounded right-angled polyhedra, |

Let R be the set of all bounded right-angled polyhedra in H3.
Inoue, 2008: Two moves on R.

e Composition / Decomposition: Consider two combinatorial
polyhedra Ry, R, with k-gonal faces F; C Ry and F, C R,. Then
their composition is a union R = Ry Ur,—F, R>.

If R, R, € R, then R € R.
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Two moves for bounded right-angled polyhedra, 11

e Removing / adding edge: move from R to R — ¢ and inverse:
ny n—1
n3 Ny n3+ng —4
ny n, —1
polyhedron R polyhedron R —

If R € R and e is such that faces F; and F> have at least 6 sides
each and ¢ is not a part of prismatic 5-circuit, then R — ¢ € R.

Adding edge is known as a Endo—Kroto move for fullerenes. In the case
of fullerences ny = n, = 6 and n3 = ny = 5.
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Reducing to Lobell polyhedra

Inoue, 2008: For any Py € R there exists a sequence of unions of
right-angled hyperbolic polyhedra Py, ..., Py such that:

e each set P; is obtained from P;_; by decomposition or edge
removing,

e any union Py consists of Lobell polyhedra.

Moreover,

vol(Py) = vol(Py) = vol(P) > ... = vol(Py).
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The set of Pogorelov polyhedra

More detailed description:

e Any Lobell polyhedron is non-reducible: it doesn't admit edge
removing to another Pogorelov polyhedron or a decomposition into
two Pogorelov polyhedra.

e Suppose polyhedron P is Pogorelov, but not Lobell. Then P either
can be reduces to another Pogorelov polyhedron by removing an
edge, or can be decomposed into two Pogorelov polyhedra, one of
which is a dodecahedron.
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Lobachevsky function

To express volumes of hyperbolic 3-polyhedra we use the Lobachevsky

function
0

A(6) = —/Iog|2sin(t)\dt.
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The volume formula for Lobell polyhedra

To each Pogorelov polyhedron R we correspond volume vol(R) of its
right-angled realization in H3.

V., 1998: Let L(n) denote the Lobell polyhedron, n > 5. Then

vol(L(n)) = 2 [2A(0n) + A (80 + =) + A (00— =) +A (5 —20) |,

where
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The census of bounded right-angled polyhedra

Inoue, 2008: The dodecahedron L(5) and the polyhedron L(6) are the
first and the second smallest volume bounded right-angled hyperbolic
polyhedra.

Shmel’kov — V., 2011: The eleven smallest volume bounded
right-angled hyperbolic polyhedra:

1|4.3062...L(5) | 7 |8.6124... | L(5)UL(5)
216.0230... | L(6) || 8 |8.6765... | L(6)3
316.9670... | L(6) || 9 |8.8608... | L(6)3
4175632... | L(7) || 10 | 8.9456... | L(6)3
5(7.8699... | L(6)2 || 11 | 9.0190... | L(8)

6 | 8.0002... | L(6)3

21



Adding of edges: from L(6) to L(6)!

The polyhedron L(6) and possible faces to add an edge (Endo—Kroto
move):

The polyhedron L(6)! and possible faces to add an edge:
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Volume bounds from combinatorics of polyhedra

Atkinson, 2009: Let P be a bounded right-angled hyperbolic polyhedron
with F faces. Then

Vg 3vg 5v3 35v3
o — K B - =
eF— 22 <vwl(P) < Z2F - =8,

where vg = 3.66386... and vz = 1.01494 .. ..

Matveev — Petronio - V., 2009: For Lobell polyhedron L with F faces

5\/3 5v
we have vol(L) — “g* F — =72

3 as F — 0.

Inoue, arxiv:1512.0176:

The first 825 bounded right-angled polyhedra are constructed by
compositions and edge surgeries. The 825-th smallest right-angled
polyhedron has volume 13.4203.. ..
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The modern census of bounded right-angled polyhedra

Shmel’kov — V.: about 3.000 smallest bounded right-angled polyhedra.

Compact right-angled hyperbolic polyhedra

Atkinsan's lower bound
—  Atkinson's upper bound
=+« Compact polyhedra
s Lobell polyhedra
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Bounded right-angled polyhedra in H", n > 3

There is a bounded right-angled polyhedron in H*. Combinatorically it is
the 120-cell, the convex regular 4-polytope with the boundary composed
of 120 dodecahedral cells with 4 meeting at each vertex.

Nikulin 1981: No bounded right-angled polyhedra in H" for n > 4.

Open problem. Are there bounded right-angled polyhedra in H* which

are not obtained from the 120-cell?
25



Constructing manifolds from
Pogorelov polyhedra




Stabilizer of a vertex

Suppose

e P be a bounded 7/2—polyhedron in H?3;
e G be the group generated by reflections in faces of P.

For each vertex v € P its stabilizer in G is generated by three reflections
g1, &, & and is isomorphic to the eight-element abelian group
(Z/2Z) © (Z/2Z) @ (Z/2Z) = Z3.
gI
g;
g]
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Local linear independence

The group Z3 can be regarded as the finite vector space over the field
GF(2) with a basis

{(1,0,0),(0,1,0),(0,0,1)}.
Al-Jubouri, 1980: The kernel Ker ¢ of an epimorphism ¢ : G — Z3 is

torsion-free if and only if for any vertex v of P images of reflections in
faces incident to v are linearly independent in Z3.

The proof was done for a dodecahedron, but can be easy generalized.

Thus, if ¢ satisfies this local linear independence property then
M = H3/ Ker ¢ is a closed hyperbolic 3-manifold (orientable or
non-orientable) constructed from eight copies of P.
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Four colours

Elements o = (1,0,0), 5 = (0,1,0), v = (0,0,1) and
d=a+p+~v=(1,1,1) are such that any three of them are linearly
independent in Z3.

V., 1987: If ¢ : G — Z3 is such that for any generator g of G its image
©(g) belongs to {a, 3,7,d} then Ker ¢ consists of orientation-preserving
isometries.

Cor. If an epimorphism ¢ : G — Z3 is such that

e for any generator g of G its image ¢(g) belongs to {«a, 3,7,0};

e for any two adjacent faces their images are different;
then M = H3/Ker ¢ is a closed orientable hyperbolic 3-manifold.

Cor. Any 4-colouring of faces of a Pogorelov polyhedron P determ a
closed orientable hyperbolic 3-manifold.
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Tiling around a vertex, |




Tiling around a vertex, Il




Tiling around a vertex, Il

P U gi(P)U g(P) U g3(P) U gig2(P) U g1g3(P) U g283(P)



Tiling around a vertex, IV

A fundamental polyhedron for Ker p < G:
P U g1(P) U g(P) U gs(P) U g182(P) U g183(P) U g283(P) U g18283(P)



Example: the Lobell manifold

The classical Lobell manifold, the first example of closed orientable
hyperbolic 3-manifold in 1931, can be obtained in this way: from the
following 4-colouring of L(6):

F. Lobell, Beispiele geschlossene dreidimensionaler Clifford—Kleinischer
Riaume negative Kriimmung, Ber. Verh. Sachs. Akad. Lpz., Math.-Phys.
KI. 83 (1931), 168-174.
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When two 4-colourings induce the same manifolds?

Let P be a bounded right-angled hyperbolic polyhedron. Let G be
generated by reflections in faces of P, and ¥ be the symmetry group of P.

A group G is said to be naturally maximal if (G, %) is maximal discrete
group, i.e. is not a proper subgroup of any discrete group of Isom(H?).

V.: Let G be non-arithmetic and naturally maximal. Let 1,9 : G — Z3
be epimorphisms induced by two 4-colourings. Manifolds H3/ Ker(¢1)
and H3/ Ker((p2) are isometric if and only if 4-coloruings are equivalent.

Example. Let L(n), n > 5, be the L&bell polyhedron and G(n) be the
group generated by reflections in faces of it.

1. Roeder: if n # 5,6, 8 then group G(n) is non-arithmetic;
2. Mednykh: if n > 6 then G(n) is naturally maximal.
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Equivalence of 4-colourings

The toric topology approach.

Buchstaber, Erochovets, Masuda, Panov, Park, 2017:
“Cohomological rigidity of manifolds defined by right-angled
3-dimensional polytopes”.

Buchstaber, Panov, 2016:

Let M = (P,¢) and M = (P', &) be hyperbolic 3-manifolds,
corresponding to 4-colourings of Pogorelov polyhedra: ¢ for P and ¢’ for
P’. Then M and M’ are diffeomorphic if and only if pairs (P, ) and
(P’, ') are equivalent.
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The set of all ideal right-angled
hyperbolic polyhedra




Ideal right-angled antiprisms

Let A,, n> 3, be an ideal (with all vertices at infinity) n-antiprism in H3
with dihedral angles /2. Antiprism A7 is presented it the figure.

It is known from Thurston's lecture notes (1978) that
T T
= b 2) e G- )
vol(Ax) " 4 + 2n + 4  2n

+ Images are due to Wikipedia, www.wikipedia.org
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Ideal right-angled octahedron

Observe that A3 is an ideal right-angled octahedron.
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Moves on ideal polyhedra

Let A be the set of all ideal right-angled polyhedra in H3. Define a move
on the set A.

e Edge twisting: combinatorial transformation from A € A to A*:

0——eL0
2 >
A A*

Example. An edge-twisting applied to the 4-antiprism.
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The set of all ideal right-angled polyhedra

Shmel’kov, 2011 (MSc diploma work, still unpublished):

1. If A€ A then A* € A.
2. The volume increases under an edge twisting move.

3. Every ideal right-angled polyhedron A € A can be constructed by
a finitely many edge twisting moves from an n-antiprism A,, for

some n.

Ideas of the proof.
1. Rivin, 1992: a polytope A € A if and only is 1-skeleton of A is
4-valent and cyclically 6-connected.

2. Schlafli volume variation formula.

3. Brinkmann, Greenberg, Greenhill, McKay, Thomas, Wollan, 2005:
generation of simple quadangulations of the sphere.
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Census of ideal right-angled polyhedra

Cor. The octahedron A3 and polyhedron A4 are the first and the second
smallest volume ideal right-angled polyhedra.

The nineteen smallest volume ideal right-anged hyperbolic polyhedra:

1] 36638...[ As 11 ]10.9915. .. | Az*(6)
2 | 6.0230... | A 12 [ 11.1362... | A*(5)
3| 73277, | A4 13 11.1362... | A:*(2)
4| 81378... [ As 14 | 11.4472. . | A*(3)
5 | 8.6124... | A 15 [ 11.8017... | A;**(1)
6 | 9.6869... | A 16 | 11.8017... | AZ(1)
7 1101494 ... [ Az |17 12.0460. .. [ A;**(2)
8 | 10.1494. . | Aq 18 | 12.0460... | A%(2)
9 [10.8060... | Az*(1) || 19 [ 12.1062... | A;

10 [ 10.9915. .. | Az*(4)
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The smallest volume decomposible link

Cor. The Whitehead link complement is the smallest volume link
complement that can be decomposed into ideal right-angled polyhedra
(one copy of the octahedron A(3)):
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The structure of the volume set

Shmel’kov — V.: about 2.000 smallest ideal right-angled polyhedra.

Idea| right-angled hyperbolic polyhedra

« Ideal polyhedra
s*s Antiprisms

10 - .

a 1 12 14
Number of faces
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Constructing manifolds from
ideal right-angled polyhedra




Let A€ A and G(A) be a group, generated by reflections. Let
¢ : G — 73 be a surjective homomorphism given by a Z3—colouring of
faces of A. Then M = H3/Ker ¢ is a cusped hyperbolic 3-manifold.

Moreover, M is orientable if ¢ corresponds to a 2-colouring (colours
(1,0),(0,1) € Z3) and non-orientable if it corresponds to a 3-colouring
(colours (1,0),(0,1),(1,1) € Z3).

Example. Consider an ideal right-angled octahedron A(3). it is easy to
see that A(3) admits one 2-colouring and three 3-colourings as presented
in the figure. Denote corresponding epimorphisms by g, ©1, @2, and ¢s3.
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Kernel of the epimorphism

For the epimorphism g : G(A(3)) — Z3 denote 'y = Keryy.

A fundamental polyhedron A(3) of Iy consists of 4 copies of A(3):

B X, B
C
F. F
N2 X
Xs E; Xs E X3
X, ' D, X, A X D X

Fy 1
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Manifold constraction

A has 16 faces, 14 ideal vertices
A B,C,G,D,Dy5,E Ei,Ey, E1o, F, F1, Fa, Fro.
o is generated by isometries xi, ..., xg, where X; : Xfl — X;.
Vertices of A split in 6 classes of equivalent under y:
{A} B}, {C,C},{D, D}, {E,Ey, Ep, Exa}, {F, F1, Fo, Fi2}.
Each class gives a tori cusp of a manifold My = H3/Ty.

My is complement of a 6-chain link. vol My = 14,65544951 . . ..

S\
¢
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Non-orientable cusped manifolds

We have 3-colourings in non-trivial elements of Z3: ¢1, 2, and ¢s3.
All of them lead to non-orientable manifolds with 6 cusps.

Cusps of My = H3/Ker p1: 3 tori and 3 Klein bottles.

Cusps of M, = H3/Ker ¢5: 2 tori and 4 Klein bottles.

Cusps of M3 = H3/Ker ¢3; 6 Klein bottles.

Open problem. lIs it true in general case that non-equivalent
3-colourings give non-homeomorphic manifolds?
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Finite-volume right-angled polyhedra in H", n > 3

Examples are known for n < 8 only. Consider simplices T3,..., T® given
by Coxeter diagrams:

T3 (and Bs) T* (and F) T5 (and Ds)
——> —d———= .——Q—I—o
T (and Eg) T7 (and E) T8 (and Eg)

I I I

“Black” subdiagrams correspond to finite Coxeter groups: |Bs| = 23 - 3!,
|Fa| = 1152, |Ds| = 2% - 51, |Es| = 72 - 6!, |E/| = 728!, |E| = 192 - 101.

Dufour, 2010: No finite volume 7 /2—polyhedra in H"” for n > 12.

Open problem. What about dimensions n = 9,10,11, 127
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General construction

Let P C H" be a right-angled polyhedron and G(P) be a group,
generated by reflections in hyperfaces. Denote the set of hyperfaces F.
Let homomorphism ¢ : G(P) — Z&, k > n be identified with a colouring
¢ : F — 7 of hyperfaces. Let colouring ¢ : F — ZX be regular, that
means

e for any finite vertex of P colours of incident hyperfaces are linear
independent as vectors in Z’z‘,
e for any edge of P colours of incident hyperfaces are linear

independent.

V. 1987; Davis and Janushkevich, 1991; Garrison and Scott, 2003;
Kolpakov, Martelli and Tschantz, 2015; Kolpakov and Slavich,
2016:

Then I = Ker ¢ is torsion-free and M = H"/T is a hyperbolic manifold.
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4-manifold with 1 cusp

Kolpakov, Slavich, 2016:
There are orientable hyperbolic 4-manifolds with 1 cusp.
The manifold X' has unique cusp which is S!-fibre over a Klein bottle.

The manifold ) has unique cusp which is a 3-torus.

Open problem. Are there hyperbolic 5-manifolds with 1 cusp?
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Thank youl!
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