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Virtual knot theory and chord index



A virtual knot (L. Kauffman 1999) is

I an embedding of S1 in Σg × [0, 1] up to isotopy and

stabilizations

I a chord diagram up to Reidemeister moves

+

+



Virtual link types= {all virtual link diagrams}/{generalized
Reidemeister moves}

Ω1

Ω′
1

Ω2

Ω′
2

Ω3

Ω′
3

Ωs
3



A (naive) question is

Question

Can we define a virtual knot invariant by counting the number of

chords in a chord diagram (number of crossings in a knot

diagram)?



Unfortunately, the answer is No.

Actually, we know that the signed sum (writhe) is not a virtual

knot invariant.

We may ask

Question

How can we define a virtual knot invariant by counting the number

of chords in a chord diagram (number of crossings in a knot

diagram)?



A Z2-assignment

A chord (and the corresponding crossing) is called even/odd if

there are an even/odd number of chords which have nonempty

intersection with it.

odd

odd

even

Theorem (L. Kauffman 2004)

The odd writhe J(K ) =
∑︀

ci∈Odd(K)

w(ci ) is a virtual knot invariant,

here Odd(K ) denotes the set of odd crossings and w(ci ) is the

writhe of ci .

Remark If K is a classical knot diagram, then Odd(K ) = ∅.



A Z-assignment via Gauss diagram

Let G (K ) be a Gauss diagram, and c a chord, we define

r+(c)= the number of positive chords crossing c from left to right;

r−(c)= the number of negative chords crossing c from left to right;

l+(c)= the number of positive chords crossing c from right to left;

l−(c)= the number of negative chords crossing c from right to left.

+
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Define the index of c as

Ind(c) = r+ − r− − l+ + l−.



Remarks

1. The first kind of this index, the “intersection index”, was

introduced by A. Henrich in 2010, which equals |Ind(c)|.
2. In 2013, H. Dye defined a “parity mapping” from the set of

chords to Z, which is exactly the inverse of Ind(c).



Several (mutually equivalent) polynomial invariants of virtual knots

have been defined independently:

1. (Gao, C. 2013) The writhe polynomial

WK (t) =
∑︀

Ind(ci )̸=0

w(ci )t
Ind(ci ) is a virtual knot invariant.

2. (H. A. Dye 2013) The Gauss diagram invariant |An(G (K ))|
equals the coefficient of t−n in WK (t).

3. (Y. H. Im, S. Kim, D. S. Lee 2013) The parity writhe

polynomial FK (x , y) =∑︀
Ind(ci ) is odd

w(ci )x
Ind(ci )+1 +

∑︀
Ind(ci ) is even

w(ci )y
Ind(ci )+1 − w(K )x .

By replacing y with x , it coincides with (WK (x)−WK (1))x .

4. (L. Folwaczny, L. Kauffman 2013) The affine index polynomial

can be described as PK (t) = WK (t)−WK (1).

5. (S. Satoh, K. Taniguchi 2014) The nth parity writhe Jn(K ) is

equal to the coefficient of tn in WK (t).



An example:

+
+

+

Index= 2

Index= −2

Index= 0

WK(t) = t2 + t−2

Proposition

1. Wr(K)(t) = WK (t
−1),Wm(K)(t) = −WK (t

−1), here r(K ) is

the inverse of K and m(K ) is the mirror image of K.

2. Assume WK (t) =
∑︀
n
ant

n, then |an| provides a lower bound of

the number of crossing points with index n for any n ̸= 0.

3. (B. Mellor 2016) spanWK (t) ≤ 2cv (K ), here cv (K ) denotes

the virtual crossing number of K.



Finite type invariant of virtual knots



Finite type invariant (Vassiliev invariant)

I f is a knot invariant which take values in an abelian group.

I Extend f to an invariant of singular knots with n singularities

via the following recursive relation.

f (n)(K ) = f (n−1)(K+)− f (n−1)(K−)

b

K K+ K−

I f is a finite type invariant of degree n if it vanishes on singular

knots with n + 1 singularities and does not vanish on some

singular knot with n singularities.



Finite type virtual knot invariant of degree 0

I Finite type invariant of degree 0 ⇒ it is invariant under

crossing change ⇒ it take the same value on all classical

knots.

I (Sawollek 2003, Henrich 2010) For virtual knots, finite type

invariant of degree 0 need not to be trivial.

Recall that the writhe polynomial WK (t) =
∑︀

Ind(ci )̸=0

w(ci )t
Ind(ci ),

we define

FK (t) = WK (t)−WK (t
−1).

Theorem (C. 2016)

FK (t) is a finite type virtual knot invariant of degree 0.



Finite type virtual knot invariant of degree 1

Rewrite the writhe polynomial

WK (t) =
∑︀

Ind(ci )̸=0

w(ci )t
Ind(ci ) =

+∞∑︀
n=−∞

ant
n.

Note that only finitely many an ̸= 0.

Theorem (Dye 2013)

an is a finite type virtual knot invariant of degree 1.

Corollary

The writhe polynomial WK (t) is a finite type virtual knot invariant

of degree 1.



Finite type virtual knot invariant of degree 2

I G (K ) is a Gauss diagram.

I c denotes a pair of nonintersecting chords.

I Define T to be the set of chords which have nonempty

intersection with c.

I Denote T = T1 ∪ T2 ∪ T3. Each Ti provides an “index” ti to

the pari c.

(i, k, j) (i, j, k) (k, i, j)

T1

T2

T3

T1

T2

T3

T1

T2

T3



I Define the triple-index of c to be (|t1|, |t2|, |t3|).
I For a fixed triple (i , j , k) (i , j , k ≥ 0 and i ̸= j ̸= k ̸= i), define

a set Fi ,j ,k to be all the pairs of nonintersecting chords such

that the triple-index of each pair agrees with one the three

cases below

(i, k, j) (i, j, k) (k, i, j)

T1

T2

T3

T1

T2

T3

T1

T2

T3

Theorem (Chrisman, Dye 2014)

𝜑(K ) =
∑︀

c∈Fi,j,k

w(c)x iy jzk is a finite type virtual knot invariant of

degree 2, where w(c) denotes the product of the writhes of the two

chords in c.



Indexed Jones polynomial



Given a virtual knot diagram K , for any n ∈ {0, 1, 2, · · · } we set

Cn
r (K ) = {x ∈ Cr (K )|Ind(x) ∈ {· · · ,−2n,−n, 0, n, 2n, · · · }},

here Cr (K ) denotes the set of real crossings in K .

= A + A−1 ,K ∪© = (−A2 −A−2)K

After smoothing all crossings in Cn
r , we define V n

K (t) =

(−A−3)w(K)
∑︀
s
A♯ 0-smoothing−♯ 1-smoothing(−A2 − A−2)|s|−1|

A=t−
1
4
.

Theorem (C. 2016)

V n
K (t) is a virtual knot invariant.



Remark

I V 1
K is nothing but the classical Jones polynomial.

I With some modification (replace x /∈ Cn
r with a dot) one can

define a more general a polynomial invariant with graphical

coefficients. In this case, V 2
K is essentially equivalent to the

parity bracket polynomial defined by V. O. Manturov in 2010.

I Similar idea can be used to define indexed Miyazawa/arrow

polynomial.



cnr (K ) = the minimal number of real crossing points with index n

among all diagrams of K .

Proposition (C. 2016)

cnr (K ) ≥ spanV n
K (t).

Example Ind(a) = 0, Ind(b) = 1, Ind(c) = 0, Ind(d) = −1.

a

b

c

d

I WK (t) = t1 + t−1 ⇒ c1r (K ) = c−1
r (K ) = 1.

I V 0
K (t) = −t4 + t3 + t

5
2 ⇒ c0r (K ) = 2.



Virtual knot invariant from indexed quandle



An indexed quandle is a set X with a family of binary operations

*i : X × X → X (i ∈ Z) such that

1. a *0 a = a

2. ∀b, c ∈ X , i ∈ Z, ∃!a such that a *i b = c

3. (a *i b) *j c = (a *j c) *i (b *j−i c)

Remark Indexed quandle ̸= G -quandle or multi-shelf in general.

Some Examples

I A quandle (X , *) can be naturally thought of as an indexed

quandle by defining *i = * for any i ∈ Z.
I A quandle (X , *) also can be regarded as an indexed quandle

by defining *0 = * and a *i b = a for i ̸= 0.

I Let G be a group, for any 𝜑 ∈ Aut(G ) and z ∈ Z (G ) (the

center of G ), G can be regarded as an indexed quandle with

operations

a *i b = 𝜑(ab−1)bz i .



Let K be a virtual knot diagram, we define the indexed knot

quandle IndQ(K ) to be the indexed quandle generated by each arc,

and each classical crossing gives rise to a certain relation as below

b

a x c = a ∗i b if Ind(x)=i

Theorem (C. 2016)

The indexed knot quandle is a virtual knot invariant.

Corollary

Given a finite indexed quandle X , |Hom(IndQ(K ),X )| is a virtual

knot invariant.



Example

K = virtual trefoil knot.

X = {0, 1} with operations a *i b = a+ i (mod 2).

Then

|Hom(IndQ(K ),X )| = 2.

Note that the virtual trefoil knot has trivial knot quandle.



Cocycle invariant

Let A be an abelian group, if 𝜑i : X × X → A (i ∈ Z) satisfy

𝜑j+k(a *k b, c) + 𝜑k(a, b) = 𝜑j+k(a, c) + 𝜑k(a *j+k c , b *j c),

and in addition

𝜑0(a, a) = 1,

for any a, b, c ∈ X and j , k ∈ Z. Then one can similarly define an

invariant as follows

Φ𝜑(K ) =
∑︀
𝜌

∏︀
x
𝜑Ind(x)(a, b)

w(x),

where 𝜌 ∈ Hom(IndQ(K ),X ), x takes over all classical crossings of

K , Ind(x) and w(x) denote the index and writhe of x respectively.

Theorem (C. 2016)

Φ𝜑(K ) is a virtual knot invariant.



Example

K1 K2

Consider the indexed quandle Q = {0, 1} with operations

a *i b = a+ i (mod 2), and an indexed quandle 2-cocycle 𝜑 defined

by 𝜑(0, 0) = 𝜑(1, 1) = 0 and 𝜑(0, 1) = 𝜑(1, 0) = 1. Then we have

|Col(Q,*i )(K1)|=|Col(Q,*i )(K2)| = 2,

but Φ𝜑(K1) = 1 + 1̸=Φ𝜑(K2) = 0 + 0.



What is a chord index?



Definition

In general, a chord index is a(n) integer/polynomial/group/algebra

etc. assigned to each real crossing point such that

1. all crossing points involving in the first Reidemeister move

have the same index,

2. the two crossing points involving in the second Reidemeister

move have the same index,

3. the index of each crossing point involving in the third

Reidemeister move is preserved under the third Reidemeister

move.

This motivates us to relate it with the Boltzmann weight in

(bi)quandle cocycle invariants!



Definition (Fenn, Jordan-Santana, Kauffman 2004)

A biquandle BQ is a set with two binary operations

*, ∘ : BQ ×BQ → BQ such that the following axioms are satisfied

1. ∀x ∈ BQ, x * x = x ∘ x ,
2. ∀x , y ∈ BQ, there are unique z ,w ∈ BQ such that z * x = y

and w ∘ x = y , and the map S : (x , y) → (y ∘ x , x * y) is
invertible,

3. ∀x , y , z ∈ BQ, we have

(z ∘ y) ∘ (x * y) = (z ∘ x) ∘ (y ∘ x),
(y ∘ x) * (z ∘ x) = (y * z) ∘ (x * z),
(x * y) * (z ∘ y) = (x * z) * (y * z).



Coloring a virtual knot K with a given finite biquandle BQ:

associate each semiarc with an element of BQ such that at each

crossing point the following coloring rules are satisfied

x

y

y ◦ x

x ∗ y

y

x

x ∗ y

y ◦ x

Theorem

The coloring number |ColBQ(K )| is a virtual knot invariant.



For a given finite biquandle BQ, consider the following group

GBQ = ⟨(x , y) ∈ BQ × BQ|(x , x) = 1, (x , y)(y , z)(x * y , z ∘ y) =
(x * z , y * z)(y ∘ x , z ∘ x)(x , z)⟩.

Remark

For any abelian group A, each homomorphism 𝜌 : GBQ → A is a

biquandle 2-cocycle.

Consider the following subgroup of GBQ

GBQ = ⟨(x , y) ∈ BQ × BQ|(x , x) = 1, (x , y) =

(x * z , y * z), (y , z) = (y ∘ x , z ∘ x), (x , z) = (x * y , z ∘ y)⟩.



Fix a coloring f ∈ ColBQ(K ), assign a Boltzmann weight

Wf = (x , y) ∈ GBQ

to the crossing points below

x

y

y ◦ x

x ∗ y

y

x

x ∗ y

y ◦ x

Definition

The chord index (associated to BQ) of a crossing point is defined

to be
∑︀
f

Wf ∈ ZGBQ . In particular, if 𝜓 denotes a homomorphism

from GBQ to a group A, then we obtain a chord index

𝜓(
∑︀
f

Wf ) ∈ ZA.



For any g ∈ ZGBQ we define

ag(K ) =

⎧⎪⎪⎨⎪⎪⎩
∑︀

Ind(c)=g

w(c) if g ̸= ∑︀
1;∑︀

Ind(c)=g

w(c)− w(K ) if g =
∑︀

1.

Theorem (C. 2016)

For any finite biquandle BQ, ag(K ) is a virtual knot invariant.



Example

Let X = (Z, *, ∘) be a biquandle with operations

x * y = x ∘ y = x + 1. Choose a map 𝜌 : Z×Z→ Z defined by

𝜌(x , y) = y − x . Then we recover the chord index used in the

writhe polynomial.

Example

X = {1, 2}, and 1 * i = 1 ∘ i = 2 and 2 * i = 2 ∘ i = 1 (i = 1, 2).

In this case GX
∼= Z, which is generated by t = (1, 2). For the

virtual link below we have

a1+1+t+t(L) = 2, at+t+t+t(L) = 1.

a

b

c



The following result explains the reason why we must use a

biquandle rather than a quandle.

Proposition

Let Q be a finite quandle and K a virtual knot diagram, then all

the crossing points of K have the same index
∑︀

|ColQ(K)|
1.

Question

Can we use this generalized chord index to define a nontrivial

chord index for classical knots?



Thank you!


