Representations of virtual braid groups to rook algebras and virtual links invariants

Konstantin Gotin

Sobolev Institute of Mathematics

July 5, 2017

Braid group on n strands, denoted by \mathcal{B}_n , is a group generated by $\sigma_1, \ldots, \sigma_{n-1}$ satisfying the following relations:

$$\begin{split} \sigma_i\sigma_j &= \sigma_j\sigma_i, \text{ if } |i-j| > 1, \\ \sigma_{i+1}\sigma_i\sigma_{i+1} &= \sigma_i\sigma_{i+1}\sigma_i, \quad \text{for } i=1,\dots,n-2. \end{split}$$

Fix the points $P_i = (i, 1)$ and $Q_i = (i, 0)$ in \mathbb{R}^2 for i = 1, 2, ..., n. For braid word ω , presented braid $\beta \in \mathcal{B}_n$, we connect P_i and Q_i by drawing following diagrams

for generators σ_i and σ_i^{-1} .

The result is called the diagram of braid β

Relations of braid groups correspond to plane isotopies and Reidemeister moves 2 and 3.

The geometrical interpretation of relation $\sigma_{i+1}\sigma_i\sigma_{i+1} = \sigma_i\sigma_{i+1}\sigma_i$.

The set of all braid diagrams up to isotopies an and Reidemeister moves form a group, isomorphic to braid group \mathcal{B}_n .

Closure of the braid β is the link, that can be obtained of geometric representative of braid β by identifying Q_i and P_i for $i=1,\ldots,n$.

Theorem (J.Alexander)

Every link can be represented as a closed braid.

Theorem (A.Markov)

Two braids $\beta_1 \in \mathcal{B}_n$, $\beta_2 \in \mathcal{B}_m$ has the same closures if and only if beta₂ can be obtained from beta₁ by sequence of following moves or its inverses:

- 1. $\alpha \to \sigma_i^{-1} \alpha \sigma_i$,
- 2. $\alpha \to \ell(\alpha)\sigma_n^{\pm 1}$,

here $\alpha, \sigma_i \in \mathcal{B}_n$, $\sigma_n \in \mathcal{B}_{n+1}$ and ℓ is a natural embedding of \mathcal{B}_n to \mathcal{B}_{n+1} .

Now we can consider links as braids up to Markov moves.

Virtual braid group on n strands, denoted by $V\mathcal{B}_n$, is a group with generators:

$$\sigma_1,\ldots,\sigma_{n-1},\rho_1,\ldots,\rho_{n-1}$$

and relations:

$$\begin{split} \sigma_{i}\sigma_{j} &= \sigma_{j}\sigma_{i}, \text{ if } |i-j| > 1, \\ \sigma_{i+1}\sigma_{i}\sigma_{i+1} &= \sigma_{i}\sigma_{i+1}\sigma_{i}, \text{ for } i=1,\ldots,n-2, \\ \rho_{i}^{2} &= e, \text{ for } i=1,\ldots,n-1, \\ \rho_{i+1}\rho_{i}\rho_{i+1} &= \rho_{i}\rho_{i+1}\rho_{i}, \text{ for } i=1,\ldots,n-2, \\ \rho_{i}\rho_{j} &= \rho_{j}\rho_{i}, \text{ if } |i-j| > 1, \end{split}$$

$$\rho_{i}\rho_{i+1}\sigma_{i} &= \sigma_{i+1}\rho_{i}\rho_{i+1}, \text{ for } i=1,\ldots,n-2, \\ \sigma_{i}\rho_{i} &= \rho_{i}\sigma_{i}, \text{ if } |i-j| > 1. \end{split}$$

The diagrammatic interpretation of generator ρ_i .

Closure of virtual braid is defined similarly as closure of classical braid.

Let $R_n, n \ge 1$ denote a set of $n \times n$ matrices with entries from the set $\{0, 1\}$ having at most one 1 in each row and in each column.

Example for n = 2

$$\left\{\begin{pmatrix}0&0\\0&0\end{pmatrix},\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix},\begin{pmatrix}1&0\\0&1\end{pmatrix},\begin{pmatrix}0&1\\1&0\end{pmatrix}\right\}$$

 R_n with the standard matrix multiplication is monoid, called a rook monoid.

Rook diagram is a bipartite graph with n vertices in each partite, such that each vertex has degree either zero or one. We will draw one partite on the top and another on bottom of a rectangle.

There is one-to-one correspondence between rook diagrams and matrices of R_n .

Let d_1 and d_2 be rook diagrams with the same number 2n of vertices. The product d_1d_2 is a rook diagram with 2n vertices and edges, defined by the rule presented at the following picture.

Set of all diagram with this geometrical defined multiplication is monoid, isomorphic to R_n

Given diagrams d_1 and d_2 , we define the tensor product, denoted $d_1 \otimes d_2$, to be the result of appending of d_2 to the right of d_1 .

Diagram from R_n is said to be planar if it can be drawn (keeping inside of the rectangle formed by its vertices) without any crossings of edges.

Denote by P_n the set of all planar diagrams of R_n . It is easy to see that P_n is a submonoid of R_n .

A rook algebra, denoted by $\mathbb{C}R_n$, is a \mathbb{C} -algebra generated by R_n .

A planar rook algebra, denoted by $\mathbb{C}P_n$, is a \mathbb{C} -algebra generated by P_n .

We denote elements of R_2 as following:

$$\mathrm{d}_7 = \sum$$

Define mapping $\varphi : \mathbb{B}_n \to \mathbb{C}P_n$ by the following rule:

$$\varphi(\sigma_i) = a \cdot d_{1i} + b \cdot d_{2i} + c \cdot d_{3i} + d \cdot d_{4i} + e \cdot d_{5i} + d_{6i}$$

where

$$d_{ji} = I^{\otimes i-1} \otimes d_j \otimes I^{\otimes n-i-1},$$

 $a, b, c, d, e \in \mathbb{C}$ and I is the identity diagram in P_1 .

Theorem (S.Bigelow, E.Ramos, R. Yi)

Assuming $a+c+d\neq 1$ and $cd\neq 0$, a mapping of the above form is a homomorphism if and only if its coefficients are in one of the following families:

- 1. b = e = -1,
- 2. a = -c d, b = -1, e = -cd,
- 3. a = -c d, b = -cd, e = -1,
- 4. a = 1 c d + cd, b = -cd, e = -1,
- 5. a = 1 c d + cd, b = -1, e = -cd.

Define mapping $\psi_k : V\mathbb{B}_n \to \mathbb{C}R_n$ by the following rule:

$$\psi_k(\sigma_i) = \varphi_k(\sigma_i)$$
$$\psi_k(\rho_i) = d_{i,7}$$

$$\mathrm{d}_7 = \sum$$

Theorem 1

The mapping ψ_k is a representation of $V\mathcal{B}_n$ for any $k = 1, \dots, 5$.

Example 1

Let $\psi_5^{2,3}$ be the particular case of ψ_5 for c=2, d=3. It is known that the braid $\beta = (\sigma_1^2 \rho_1 \sigma_1^{-1} \rho_1 \sigma_1^{-1} \rho_1)^2 \in V\mathcal{B}_2$ cannot be distinguished from the trivial by the Burau presentation. Direct computations show that

$$\psi_5^{2,3} \left((\sigma_1^2 \rho_1 \sigma_1^{-1} \rho_1 \sigma_1^{-1} \rho_1)^2 \right) =$$

$$- \frac{2200}{9} d_1 - \frac{500}{27} d_2 - \frac{2450}{27} d_3 + \frac{1550}{27} d_4 + \frac{8000}{27} d_5 + d_6,$$

so $\psi_5^{2,3}$ distinguish it from the trivial braid.

$$\dim(\mathbb{C}P_n) = |P_n| = \sum_{k=0}^n \binom{n}{k}^2$$

For n = 1, 2, 3, 4, 5, 6 we get 2, 6, 20, 70, 252, 924.

$$\dim(\mathbb{C}R_n) = |R_n| = \sum_{k=0}^n \binom{n}{k}^2 k!.$$

For n = 1, 2, 3, 4, 5, 6 we get 2, 7, 34, 209, 1546, 13327.

Let $[\]: \mathbb{C}R_n \to M_n(\mathbb{C})$ be a linear mapping, defined for any $d \in R_n$ as matrix, corresponding to diagram d.

Considering coefficient c as variable, we define mapping $\phi: V\mathcal{B}_n \to GL_n(\mathbb{Z}[c^{\pm 1}])$ by the following rule:

$$\begin{split} \phi(\sigma_i) &= -\frac{1}{c^2} [\psi_2(\sigma_i)] \bigg|_{d=-c} = \begin{pmatrix} I_{i-1} & & & \\ & 0 & \frac{1}{c} & \\ & -\frac{1}{c} & \frac{1+c^2}{c^2} & \\ & & & I_{n-i-1} \end{pmatrix} \\ \phi(\rho_i) &= [\psi_2(\rho_i)] = \begin{pmatrix} I_{i-1} & & & \\ & 0 & 1 & \\ & 1 & 0 & \\ & & & I_{n-i-1} \end{pmatrix} \end{split}$$

Theorem (L.Kauffman, S.Lambropoulou)

Two oriented virtual links are isotopic if and only if any two corresponding virtual braids differ by a finite sequence of braid relations $V\mathcal{B}_{\infty}$ and the following moves or their inverses:

- 1. $\rho_i \alpha \rho_i \leftarrow \alpha \rightarrow \sigma_i^{-1} \alpha \sigma_i$,
- 2. $\ell(\alpha)\rho_n \leftarrow \alpha \rightarrow \ell(\alpha)\sigma_n^{\pm 1}$,
- 3. $\alpha \to \ell(\alpha)\sigma_{\rm n}^{-1}\rho_{\rm n-1}\sigma_{\rm n}$,
- 4. $\alpha \to \ell(\alpha)\rho_n\rho_{n-1}\sigma_{n-1}\rho_n\sigma_{n-1}^{-1}\rho_{n-1}\rho_n$,

where $\alpha, \rho_i, \sigma_i \in V\mathcal{B}_n$, $\rho_n, \sigma_n \in V\mathcal{B}_{n+1}$ and ℓ is a natural embedding of $V\mathcal{B}_n$ to $V\mathcal{B}_{n+1}$.

For a virtual braid $\alpha \in V\mathcal{B}_n$ denote $F(\alpha)$ polynomial $\det(I_n - \phi(\alpha)) \in \mathbb{Z}[c^{\pm 1}].$

Theorem 2

Let $\alpha \in V\mathcal{B}_n$. For the Kauffman-Lambropoulou move

$$\alpha \to \ell(\alpha)\sigma_{\rm n}^{-1}$$

we have

$$F(\alpha) = \left(-\frac{1}{c^2}\right) F(\ell(\alpha)\sigma_n^{-1}).$$

For all other Kauffman-Lambropoulou moves $F(\alpha)$ keeps invariant.

Corollary

Let $\alpha_1 \in V\mathcal{B}_n$ and $\alpha_2 \in V\mathcal{B}_m$ correspond to the same virtual link, then $F(\alpha_1) = (-\frac{1}{c^2})^k F(\alpha_2)$ for some $k \in \mathbb{Z}$.

Example of calculation $F(\beta)$

Consider $\beta = \sigma_1 \rho_1 \in V\mathcal{B}_2$.

$$\phi(\sigma_1\rho_1) = \begin{pmatrix} 0 & \frac{1}{c} \\ \frac{1}{c} & \frac{1+c^2}{c^2} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{c} & 0 \\ \frac{1+c^2}{c^2} & \frac{1}{c} \end{pmatrix},$$

$$F(\sigma_1 \rho_1) = \det \begin{pmatrix} -\frac{1}{c} + 1 & 0 \\ -\frac{1+c^2}{c^2} & -\frac{1}{c} + 1 \end{pmatrix} = \frac{(c-1)^2}{c^2} = \frac{1}{c^2} - \frac{2}{c} + 1.$$

Theorem (T. Kadokami)

Let $\alpha = \prod_{i=1}^m \sigma_1^{q_i} \rho_1$, $\beta = \prod_{i=1}^k \sigma_1^{p_i} \rho_1$, for some $k, l, q_i, p_i \in \mathbb{Z}$ such that $l, k \geq 1$ and $q_i, p_i \neq 0$. If α and β correspond to the same virtual link then α and β are conjugated in $V\mathcal{B}_2$.

Let $\varkappa(d)$ be a number of vertical lines in diagram $d \in R_n$, f – some function, defined on integers. Define linear map $\operatorname{tr}_f: R_n \to \mathbb{R}$ by following equality

$$tr_f(d) = f(\varkappa(d)).$$

Notice

Function $\varkappa : \mathbb{C}R_n \to \mathbb{N}$ is commutative, so tr_f is commutative too.

Let $t \in \mathbb{C}$ be a complex variable, define linear mapping $\partial : \mathbb{C}R_2 \to \mathbb{C}R_2$ assuming that:

$$\begin{split} \partial(d_1) &= \partial(d_6) = \partial(d_7) = 0, \\ \partial(d_2) &= t(d_3 - d_4) = -\partial(d_5), \\ \partial(d_3) &= t(d_2 - d_5) = -\partial(d_4). \end{split}$$

Theorem 3

Mapping $\partial : \mathbb{C}R_2 \to \mathbb{C}R_2$ is a derivation on $\mathbb{C}R_2$, i.e. it satisfies the Leibniz relation

$$\partial(\mathrm{D}_1\mathrm{D}_2) = \partial(\mathrm{D}_1)\,\mathrm{D}_2\,+\,\mathrm{D}_1\,\partial(\mathrm{D}_2).$$

for any $D_1, D_2 \in \mathbb{C}R_2$.

Lemma

Let F – commutative linear function on $\mathbb{C}R_2$, then composition $F \circ \partial$ is commutative.

For virtual braid $\beta \in V\mathcal{B}_2$ and integer $m \in \mathbb{Z}$ associate the value $T_f \circ \partial^m(\beta) = \operatorname{tr}_f(\partial^m(\psi(\beta)).$

Theorem 4

Let $\alpha, \beta \in V\mathcal{B}_2$ be braids satisfying conditions of Kadokami theorem, then for any integer $m \geq 0$ and any function f we have

$$T_f \circ \partial^m(\beta) = T_f \circ \partial^m(\alpha).$$

Example 2

Consider values T_f and $T_f \circ \partial$ with $f(\varkappa) = \varkappa$. It is easy to see, that $\beta_1 = \sigma_1^3 \rho_1 \sigma_1^2 \rho_1 \sigma_1 \rho_1$ and $\beta_2 = \sigma_1^3 \rho_1 \sigma_1 \rho_1 \sigma_1^2 \rho_1$ are not conjugated in $V\mathcal{B}_2$. We have

$$T_f(\beta_1) = T_f(\beta_2),$$

but

$$T_f \circ \partial(\beta_1) \neq T_f \circ \partial(\beta_2).$$

Thus, the derivation ∂ allows us to distinguish more virtual links.

Thank you for attention!