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Braid group on n strands, denoted by By, is a group generated
by o1, ...,0,-1 satisfying the following relations:

0i0j = 007, if |i —J‘ > 1,
0i4+10i0iy1 = 0i0i+104, fori=1,...,n—2.
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Fix the points P; = (i,1) and Q; = (i,0) in R? for i = 1,2,...,n.
For braid word w, presented braid 38 € B,, we connect P; and Q;
by drawing following diagrams

1 i i idlid2 n 1 i=1 4 idlid2 n

a8 R
/ \

for generators o; and o, L

The result is called the diagram of braid g
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Relations of braid groups correspond to plane isotopies and
Reidemeister moves 2 and 3.

& /
The geometrical interpretation of relation gi110i0i+1 = 0i0i+10;.

The set of all braid diagrams up to isotopies an and
Reidemeister moves form a group, isomorphic to braid group Bj,.
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Closure of the braid 3 is the link, that can be obtained of

geometric representative of braid 8 by identifying Q; and P; for
i=1,...,n.

Pi1 .. Pn
I 1011

L
Ql...Qn
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Theorem (J.Alexander)

Every link can be represented as a closed braid.

Theorem (A.Markov)

Two braids 51 € By, 82 € By, has the same closures if and only if
betag can be obtained from beta; by sequence of following
moves or its inverses:

1. a— O'i_lon'i,

2. a — l(a)ott,
here a, o7 € By, oy € Byt1 and £ is a natural embedding of B, to
Bhi1.
Now we can consider links as braids up to Markov moves.
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Virtual braid group on n strands, denoted by VB,, is a group
with generators:

015-+-,0n-1,P1y--+,FPn-1

and relations:

oioj = ojoi, if [i—j| > 1,
Oi10i0i41 = 0i0iy105, fori=1,...,n—2,

p?=e, fori=1,...,n—1,
Pit1piPir1 = pipir1pi, fori=1,...,n—2,
pipi = pipi, if [i—j| > 1,
PiPi+10i = Tit1pipi+1, fori=1,...,n—2,

oipj = pjoi, if [i—j| > 1.
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i idlid2 n

The diagrammatic interpretation of generator p;.

Closure of virtual braid is defined similarly as closure of classical
braid.
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Let Ry, n > 1 denote a set of n X n matrices with entries from
the set {0, 1} having at most one 1 in each row and in each
column.

Example for n = 2

(56006 o) ()66 1)G o))

Ry with the standard matrix multiplication is monoid, called a
rook monoid.
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Rook diagram is a bipartite graph with n vertices in each
partite, such that each vertex has degree either zero or one. We
will draw one partite on the top and another on bottom of a
rectangle.

NN O

oo oo oo
[l Nl
oSO = O OO
[N eNeNel =
(e es B en B e B e B @]
O R O O OO

There is one-to-one correspondence between rook diagrams and
matrices of R,,.
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Let di and ds be rook diagrams with the same number 2n of
vertices. The product d;ds is a rook diagram with 2n vertices
and edges, defined by the rule presented at the following picture.

o T VTP
dy = '\/‘/ oXoo

Set of all diagram with this geometrical defined multiplication is
monoid, isomorphic to Ry
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Given diagrams d; and do, we define the tensor product, denoted
d; ® dg, to be the result of appending of dy to the right of dj.

KL KLY
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Diagram from R, is said to be planar if it can be drawn
(keeping inside of the rectangle formed by its vertices) without
any crossings of edges.

19779 SN R $ 0 99

Denote by Py, the set of all planar diagrams of Ry. It is easy to
see that P, is a submonoid of R,,.
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A rook algebra, denoted by CR,, is a C-algebra generated by
Rn.

A planar rook algebra, denoted by CP,, is a C-algebra
generated by Py.
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We denote elements of Rg as following:

TSRS S/ IS R §

=¥
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Define mapping ¢ : B, — CP,, by the following rule:
QD(O'i) =a-djj+b-doj+c-dg+d-dygy +e-ds +dgi

where ' .
dji — @1 & dj ® I®n_l_1,

a,b,c,d,e € C and I is the identity diagram in P;.
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Theorem (S.Bigelow, E.Ramos, R. Yi)

Assuming a + c+d # 1 and cd # 0, a mapping of the above
form is a homomorphism if and only if its coefficients are in one
of the following families:

1. b=e= -1,

2. a=—-c—d,b=-1,e= —cd,
3.a=—-c—d,b=—cd,e=—1,

4. a=1—-c—d+cd, b= —cd, e=—1,
a=1l—-c—d+cd, b=—-1,e=—cd.

ot
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Define mapping ¢y : VB, — CR,, by the following rule:

Pi(oi) = pr(oi)
P(pi) = di7

o-¥

Theorem 1

The mapping v is a representation of VB, for any k =1, ...
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Example 1

Let 1/152,’3 be the particular case of 15 for ¢ = 2,d = 3. It is known
that the braid 8 = (U%plaflplaflpl)Q € VBy cannot be
distinguished from the trivial by the Burau presentation.

Direct computations show that

2,3 _ _
v3? (et o ot p)?) =

2200 . 500, 2450 . 1550 . 8000
g Q1 grde— 5 dst Hmdat 5omds sy

SO wg’g distinguish it from the trivial braid.
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n 2
smcro= =3 ()

k=0
For n = 1,2,3,4,5,6 we get 2, 6,20, 70,252, 924.

n 2
dim(CR,) = [Ral = 3 (E) k!,

k=0
For n = 1,2,3,4,5,6 we get 2,7, 34, 209, 1546, 13327.
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Let [ ] : CRy, — Mp(C) be a linear mapping, defined for any
d € R, as matrix, corresponding to diagram d.

Considering coefficient ¢ as variable, we define mapping
¢ : VB, — GLy(Z[c*!]) by the following rule:

Liy
0 1
p(oi) = — 5 [1h2(03)] = 1 1f2c2
=—c c c Lo
Liy
o) =)= | | o
i1
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Theorem (L.Kauffman, S.Lambropoulou)

Two oriented virtual links are isotopic if and only if any two
corresponding virtual braids differ by a finite sequence of braid
relations VB, and the following moves or their inverses:

1. piap; <~ a — ai_laai,

2. l(a)py <+ a — L(a)ot!,

3. a— la)ogtpy_100,

4. @ = () puPo—100—1Pn0p 1 Pr—1pn;

where «, p;, 01 € VBy, pn,on € VBuy1 and £ is a natural
embedding of VB, to VB41.
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For a virtual braid oo € VB3,, denote F(«) polynomial
det(I, — ¢(a)) € Z[c*H1].

Theorem 2

Let o € VB,. For the Kauffman-Lambropoulou move

-1

a— la)o,

we have

Fa) = (-é) F(t(a)oh).

For all other Kauffman-Lambropoulou moves F(«) keeps
invariant.

Corollary

Let oy € VB, and ay € VB, correspond to the same virtual
link, then F(aq) = (—C%)k F(azg) for some k € Z.
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Example of calculation F(/3)
Consider 8 = g1p1 € VBs.
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Theorem (T. Kadokami)

Let a = [T, ofip1, B =Ty o p1, for some k, 1, q;, pi € Z such
that Lk > 1 and q;,p; # 0. If @ and S correspond to the same
virtual link then a and 8 are conjugated in VBs.

Let s(d) be a number of vertical lines in diagram d € Ry, f —
some function, defined on integers. Define linear map
tre : Rp = R by following equality

tre(d) = £(¢(d)).

Notice
Function s : CR, — N is commutative, so try is commutative
too.
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Let t € C be a complex variable, define linear mapping
0 : CRy — CRg assuming that:

d(d1) = d(dg) = 9(d7) =
O(d2) = t(ds —dy) = —5(d5),
0(ds) = t(ds — ds) = —0(dy).

Theorem 3
Mapping 9 : CRy — CRy is a derivation on CRa, i.e. it satisfies
the Leibniz relation

a(Dng) = 8(D1) Dy + Dy 8(D2).

for any D1, Do € CRo.
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Lemma
Let F — commutative linear function on CRg, then composition
F o0 0 is commutative.

For virtual braid 8 € VBs and integer m € Z associate the value

T 0 0™(B) = tre(0™ (1(B))-

Theorem 4
Let a, 8 € VB3 be braids satisfying conditions of Kadokami
theorem, then for any integer m > 0 and any function f we have

Tg o 0™(B) = Tr 0 0™(a).
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Example 2

Consider values Tt and Ty o @ with f(5c) = 5. It is easy to see,
that 81 = U%pla%plalpl and [y = U%plolpla%pl are not
conjugated in VBs. We have

Te(51) = Te(52),

but
Tg o 0(B1) # Tr o 0(B2).

Thus, the derivation 0 allows us to distinguish more virtual
links.
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Thank you for attention!
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