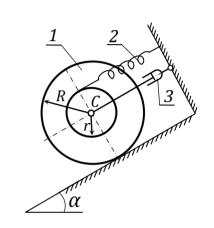
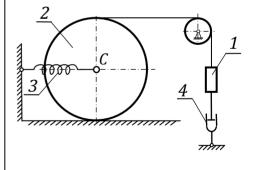

Колебания линейной системы с одной степенью свободы. Авторы Саратов Ю. С., Русанов П. Г., Тушева Г. М.

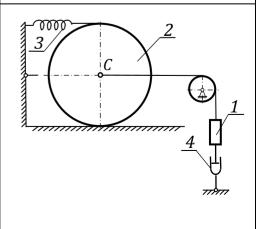
Издательство МГТУ им. Н. Э. Баумана 1985 год. Отредактировано в 2019 году.


Вариант 1. Двухступенчатый каток 1 с радиусами ступеней R и r может катиться без проскальзывания по наклонной плоскости, образующей с горизонтом угол $\alpha = 30^\circ$. На ступень радиуса R намотан трос, конец троса связан с пружиной 2, статическая деформация которой $\Delta = 0.1 \ m$. Ось катка присоединена к демпферу 3, коэффициент сопротивления которого μ .

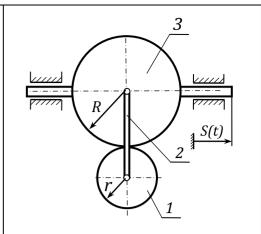
Составить дифференциальное уравнение движения катка, найти собственную частоту и логарифмический декремент колебаний катка, если его масса $m=50~\kappa z$, радиус инерции $\rho_{Cz}=\sqrt{R\cdot r}$, R=2r, $\mu=1260~H~c/m$.



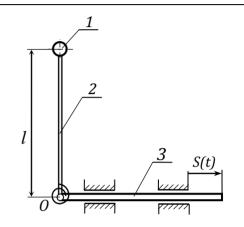
Вариант 2. Двухступенчатый каток 1 с радиусами ступеней R и r может катиться без проскальзывания по наклонной плоскости, образующей с горизонтом угол $\alpha = 30^\circ$. На ступень радиуса r намотан трос, конец троса связан с пружиной 2, статическая деформация которой $\Delta = 0.025~m$. Ось катка присоединена к демпферу 3, коэффициент сопротивления которого μ .


Составить дифференциальное уравнение движения катка, найти собственную частоту колебаний катка без учёта демпфирования, а также критическое значение коэффициента сопротивления $\mu_{\kappa p}$ демпфера, если его масса $m=10~\kappa z$, радиус инерции $\rho_{Cz}=\sqrt{R\cdot r}$, R=2r.

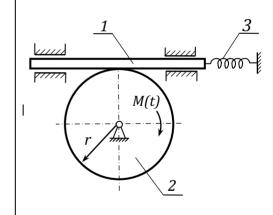
Вариант 3. Груз 1 подвешен на нити, намотанной на однородный цилиндрический каток 2, который может катиться по горизонтальной плоскости без проскальзывания. С грузом связан демпфер 4, с осью катка - пружина 3, статическое удлинение которой $\Delta = 0.034~m$. Составить дифференциальное уравнение движения системы, найти собственную частоту колебаний без учета демпфирования и критическое значение коэффициента сопротивления $\mu_{\kappa p}$ демпфера. Масса груза $m_1 = 6.8~\kappa z$, масса катка $m_2 = 8~\kappa z$.

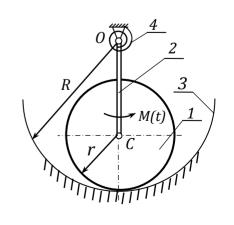


Вариант 4. Груз 1 подвешен на нити, прикрепленной к оси однородного цилиндрического катка 2, который может катиться по горизонтальной плоскости без проскальзывания. К грузу присоединен демпфер 4, с ободом катка связана пружина 3, статическое удлинение которой $\Delta = 0.019 \ m$. Составить дифференциальное уравнение движения системы, найти собственную частоту колебаний без учета демпфирования и критическое значение коэффициента сопротивления демпфера $\mu_{\kappa p}$. Масса груза $m_I = 3.8 \ \kappa z$, масса катка $m_2 = 4 \ \kappa z$.


Вариант 5. В планетарном механизме, расположенном в вертикальной плоскости, шестерня 1 связана водилом 2 с осью зубчатого колеса 3, которое движется в горизонтальных направляющих по закону $S(t) = S_0 \cdot sinpt$.

Составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний водила, если R=2r=0.2 м, $S_0=0.02$ м, p=4 рад/с. Шестерню 1 считать однородным диском, массой водила пренебречь.


Вариант 6. Груз 1 массы m укреплён на конце невесомого жесткого стержня 2, ось O которого приводится в движение штоком 3 по закону $S(t) = S_0 \cdot sinpt$. При вертикальном положении стержня спиральная пружина 4 не деформирована.


Полагая груз материальной точкой, составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний стержня, если коэффициент жесткости пружины $c_n = 10mgl$, $l = 0.98 \, \text{M}$, $S_0 = 0.01 \, \text{M}$, $p = 20 \, \text{pad/c}$.

Вариант 7. Зубчатая рейка 1 массы m_1 может двигаться в горизонтальных направляющих и находится в зацеплении с шестернёй 2 массы m_2 .

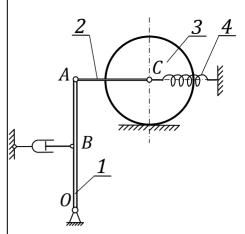
Полагая шестерню однородным диском, составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний рейки, возбуждаемых парой сил, приложенных к шестерне, с моментом $M(t)=M_0$ -sinpt, если $m_1=m_2=2$ кг, коэффициент жёсткости пружины 3 $c_n=1200$ H/м, r=0.1 м, $M_0=3$ H м, p=30 pa ∂ /c.

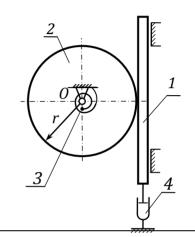
Вариант 9. Однородный стержень 1 массой m_1 невесомой жёсткой тягой 2 связан с осью однородного диска 3 массы m_3 , катящегося без проскальзывания по горизонтальной плоскости. При вертикальном положении стержня пружина 4 не деформирована.

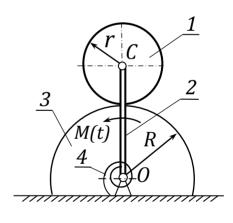
Составить дифференциальное уравнение движения системы, найти собственную частоту и логарифмический декремент колебаний, если

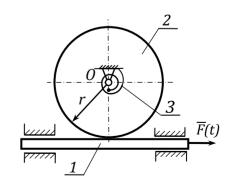
 $m_1 = 12$ кг, $m_2 = 4$ кг, коэффициент жёсткости пружины $c_n = 1073.5$ H/M, коэффициент сопротивления демпфера 5 $\mu = 180$ $H\cdot c/M$, OA = 2OB = 0.8 M.

Вариант 10. Система расположена в вертикальной плоскости и состоит из зубчатой рейки 1 массы m_1 , шестерни 2 массы m_2 , пружины 3 и демпфера 4. Полагая шестерню однородным диском, составить дифференциальное уравнение движения системы, найти собственную частоту и логарифмический декремент колебаний, если $m_1 = 2$ кг, $m_2 = 4$ кг, статическая деформация спиральной пружины $\beta = 0.25$ рад коэффициент сопротивления демпфера

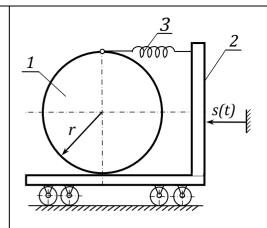

 β = 0,25 рад, коэффициент сопротивления демпфера μ = 67,2 Hc/м, r = 0,1 M.

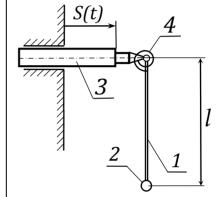

Вариант 11. В планетарном механизме шестерня 1 связана водилом 2 с осью неподвижного зубчатого колеса 3. При вертикальном положении водила спиральная пружина 4 не деформирована.


Полагая шестерню однородным диском, составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний водила, возбуждаемых парой сил с моментом $M(t) = M_0 sinpt$, масса шестерни m = 5 кг, R = 2r = 0.2 м, коэффициент жёсткости пружины $c_n = 147$ Н м/рад, $M_0 = 9$ Н·м, p = 10 рад/с. Массой водила пренебречь.

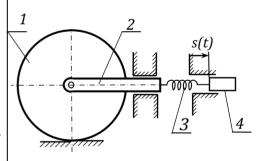

Вариант 12. Зубчатая рейка 1 кассы m_1 может двигаться в горизонтальных направляющих и находится в зацеплении с шестерней 2.

Составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний рейки, возбуждаемых силой $F(t) = F_0 sinpt$, если m = 11 кг, момент инерции шестерни $J_0 = 0.81$ кг·м², r = 0.3 м, коэффициент жёсткости спиральной пружины 3 $c_n = 180$ Н м/рад, $F_0 = 35$ Н, p = 15 рад/с.

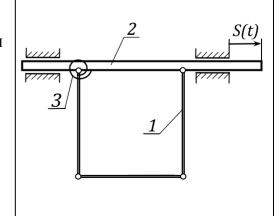




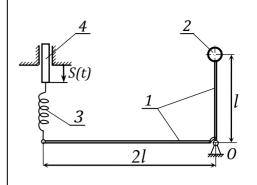
Вариант 13. Однородный цилиндрический каток 1 массы m может катиться без проскальзывания по платформе 2, перемещение которой $s(t) = s_0 \cdot sinpt$. Составить дифференциальное уравнение движения катка относительно платформы и найти амплитуду вынужденных колебаний его оси, если m = 10 кг, коэффициент жёсткости пружины $c_n = 6000$ H/м, $s_0 = 2.7$ см, p = 50 рад/с.



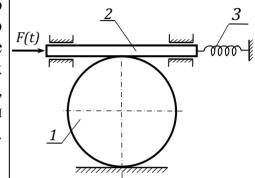
Вариант 14. Жёсткий невесомый стержень 1, несущий на конце груз 2 массы m, соединён шарниром со штоком 3, перемещение которого $s(t) = s_0 \cdot sinpt$. В вертикальном положении спиральная стержня пружина 4 не деформирована. Составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний стержня, если m = 1 кг, l = 0,4 м, коэффициент жесткости пружины $c_n = 60$ Н·м/рад, $s_0 = 4$ см, p = 30 рад/с. Принять g = 10 м/с².

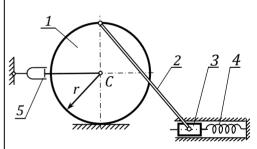

Вариант 15. Однородный цилиндрический каток 1 массы m_1 , соединённый шарниром со штоком 2 массы m_2 может катиться без проскальзывания по горизонтальной плоскости.

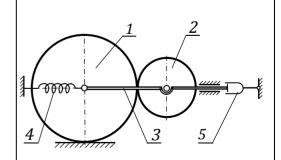
Составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний штока, возбуждаемых движением ползуна 4 по закону $s(t) = s_0 \cdot sinpt$, если $m_I = 4$ кг, $m_2 = 1$ кг, коэффициент жёсткости пружины 3 $c_n = 1372$ H/м, $s_0 = 0.6$ см, p = 10 рад/с.

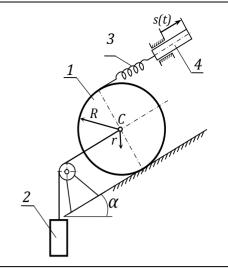


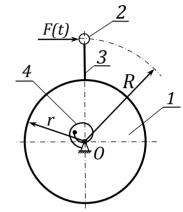
Вариант 16. Три однородных стержня 1 массы m и длиной l каждый соединены между собой и с горизонтальной рейкой 2 шарнирами. При вертикальном положении боковых стержней спиральная пружина 3 не деформирована.

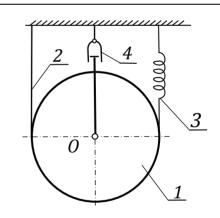

Составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний стержней, возбуждаемых движением рейки 2 по закону $s(t) = s_0 \cdot sinpt$, если m = 3 кг, l = 0.4 м, коэффициент жёсткости пружины $c_n = 56.5$ Н м/рад, $s_0 = 1.6$ см, p = 8 рад/с.

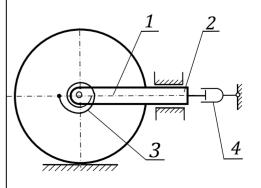

Вариант 17. На одном конце невесомого Г-образного стержня 1 закреплён груз 2 массы m, другой конец пружиной 3 связан с подвижным штоком 4. В положении, когда груз 2 располагается на одной вертикали с осью O(z) и s=0 пружина не деформирована. Составить дифференциальное уравнение движения и найти амплитуду вынужденных угловых колебаний стержня, возбуждаемых движением штока 4 по закону $s(t) = s_0 \cdot sinpt$, если m=1 кг, l=10 см, коэффициент жёсткости пружины $c_n=100$ H/м, $s_0=0.75$ см, p=10 рад/с, принять g=10 м/с²


Вариант 18. Шестерня 1 массы m_I , может катиться по неподвижной зубчатой рейке, перемещая поступательно рейку 2 массы m_2 . Составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний рейки 2, возбуждаемых силой $F(t) = F_0 \cdot sinpt$, если $m_I = 8$ кг, $m_2 = 6,8$ кг, коэффициент жёсткости пружиня 3 $c_n = 2205$ H/м, $F_0 = 98$ H, p = 5 рад/с. Шестерню принять однородным диском.

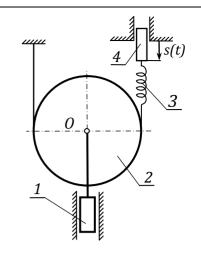

Вариант 19. Однородный диск 1 может катиться без проскальзывания по горизонтальной плоскости. Диск связан невесомым стержнем 2 с ползуном 3, который движется в гладких горизонтальных направляющих. В положении, показанном на чертеже, пружина 4 не деформирована. Составить дифференциальное уравнение движения системы, найти собственную частоту колебаний без учета сопротивления и критическое значение коэффициента $\mu_{\kappa p}$ сопротивления демпфера 5, если масса диска $m_1 = 8$ кг, масса ползуна $m_2 = 2$ кг, коэффициент жёсткости пружины $c_n = 500$ H/м.


Вариант 20. Система состоит из двух однородных дисков 1 к 2 массы m_1 и m_2 соответственно, невесомой штанги 3, пружины 4 и демпфера 5. Проскальзывание между дисками, а также между диском 1 с горизонтальной плоскостью отсутствует. Составить дифференциальное уравнение движения, найти собственную частоту и логарифмический декремент колебаний системы, если $m_1 = m_2 = 30$ кг, коэффициент жёсткости пружины $c_n = 2$ кH/м, коэффициент сопротивления демпфера $\mu = 480 \text{ H} \cdot \text{c/m}$.

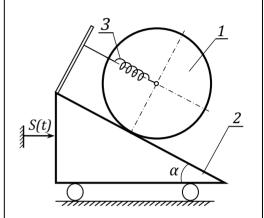

Вариант 21. Однородный диск 1 массы m_1 может катиться без скольжения по плоскости, наклонённой к горизонту под углом $\alpha = 30$ град. С осью диска нерастяжимой нитью связен груз 2 массы m_2 , с ободом пружина 3, статическая деформация которой $\Delta = 6$ см. Составить дифференциальное уравнение движения системы и найти амплитуду вынужденных колебаний груза, возбуждаемых перемещением штока 4 по закону $s(t) = s_0 \cdot sinpt$, если $m_1 = m_2 = 4$ кг, $s_0 = 2,4$ см, p = 10 рад/с.


Вариант 22. С однородным диском 1 массы m_1 невесомым стержнем 3 связан груз 2 массы m_2 . При вертикальном положении стержня 3 спиральная пружина 4 не деформирована. Составить дифференциальное уравнение движения системы и найти амплитуду вынужденных угловых колебаний стержня, возбуждаемых силой $F(t) = F_0 \cdot sinpt$, приложенной к грузу, если $m_1 = 4$ кг, $m_2 = 2$ кг, R = 2r = 0.2 м, коэффициент жёсткости пружины $c_n = 12m_2gr$, $F_0 = 2$ H, p = 10 рад/с.

Вариант 23. Однородный диск 1 массы m подвешен на нерастяжимой нити 2, конец которой связан с пружиной 3. Составить дифференциальное уравнение движения диска, найти собственную частоту (без учета демпфирования) и критическое значение $\mu_{\kappa p}$ коэффициента сопротивления демпфера 4, если m=3 кг, коэффициент жёсткости пружины $c_n=288$ H/м.

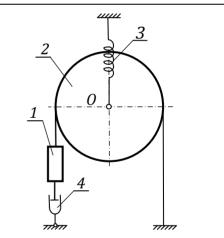


Вариант 24. Однородный диск 1 массы m_1 может катиться по плоскости без скольжения. Спиральной пружиной 3 диск связан со штоком 2 массы m_2 , движущимся поступательно в направляющих. Составить дифференциальное уравнение движения системы, найти собственную частоту (без учета демпфирования) и критическое значение $\mu_{\kappa p}$ коэффициента сопротивления демпфера 4, если $m_1=2m_2=20~{\rm kr},\ r=0,2~{\rm m},\ {\rm koэффициент}$ жёсткости пружины $c_n=40~{\rm H\cdot m/pag}$

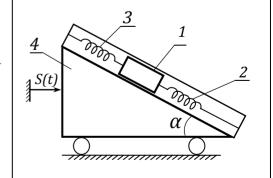


Вариант 25. Груз 1 массы m_1 соединён с осью однородного диска 2 массы m_2 , подвешенного на нерастяжимой нити и пружине 3, статическая деформация которой $\Delta = 7,5$ см.

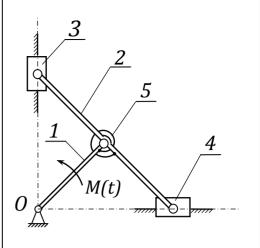
Составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний груза, возбуждаемых перемещением штока 4 по закон $s(t) = s_0 \cdot sinpt$, если $m_2 = 2m_1 = 10$ кг, $s_0 = 4.8$ см, p = 10 рад/с.

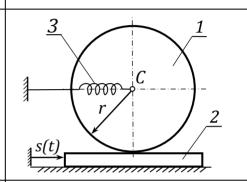


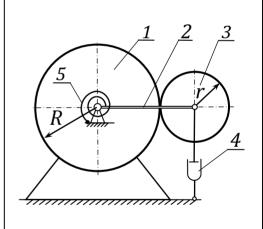
Вариант 26. Однородный диск 1 массы m может катиться без проскальзывания по наклонной плоскости призмы 2. Составить дифференциальное уравнение относительно движения катка призмы И найти колебаний амплитуду вынужденных его оси, возбуждаемых перемещением призмы по закону s(t) = s_0 -sinpt, если $\alpha = 30$ град, m = 20 кг, коэффициент жёсткости пружины 3 $c_{\Pi} = 1{,}08 \text{ кH/м}, s_{\theta} = 2 \text{ см}, p = 5$ рад/с.

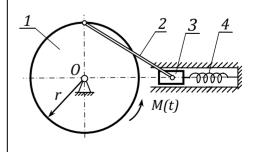


Вариант 27. . Груз 1 массы m_1 , прикреплён к концу нерастяжимой нити, перекинутой через блок 2 массы m_2 , ось которого подвешена на пружине 3.


Полагая блок однородным диском, составить дифференциальное уравнение движения, найти собственную частоту и логарифмический декремент колебаний системы, если $m_2 = 2m_1 = 20$ кг, статическая деформация пружины $\Delta = 4$ см, коэффициент сопротивления демпфера 4 $\mu = 140$ H с/м.


Вариант 28. Груз 1 массы m находится внутри наклонного гладкого канала подвижной призмы 4 и подкреплён двумя одинаковыми пружинами 2 и 3. Составить дифференциальное уравнение движения груза относительно призмы и определить амплитуду его вынужденных колебаний, возбуждаемых перемещением призмы по закону $s(t) = s_0 \cdot sinpt$, если m = 2 кг, коэффициент жёсткости одной пружины $c_n = 900$ H/м, $\alpha = 30$ град, $s_0 = 2.2$ см, p = 25 рад/с.


Вариант 29. Механизм эллипсографа расположен в горизонтальной плоскости и состоит из кривошипа 1, линейки 2, ползунов 3, 4 и спиральной пружины 5. В положении, когда кривошип перпендикулярен линейке, пружина не деформирована. Пренебрегая массами кривошипа и ползунов и принимая линейку однородным стержнем, дифференциальное уравнение составить движения найти амплитуду системы И VГЛОВЫХ колебаний кривошипа, возбуждаемых приложенной к нему парой сил с моментом $M(t) = M_0$ -sinpt, если масса линейки m = 3 кг, коэффициент жёсткости пружины $c_n = 4 \text{ HM/рад, } OC = AC = BC = l = 0.2 \text{ M, } M_0 = 1 \text{ H·M,}$ p = 15 рад/c.


Вариант 30. Зубчатое колесо 1 находится в зацеплении с подвижной рейкой 2. Полагая колесо однородным диском, составить дифференциальное уравнение движения и найти амплитуду вынужденных колебаний оси C колеса, возбуждаемых перемещением рейки по закону $s(t) = s_0 \cdot sinpt$, если m = 100 кг, коэффициент жёсткости пружины 3 $c_n = 600$ H/м, $s_0 = 5$ см, p = 3 рад/с.

Вариант 31. В планетарном механизме, расположенном в вертикальной плоскости, ось неподвижной шестерни 1 радиуса R связана невесомым водилом 2 с осью подвижной шестерни 3 радиуса r. В положении равновесия системы, когда водило горизонтально, ему сообщили угловую скорость $\omega_0 = 0,173$ рад/с. Составить дифференциальное уравнение движения системы, найти зависимость угла поворота водила от времени и определить логарифмический декремент колебаний, если R = 2r = 0,2 м, масса шестерни 3 m = 1 кг, коэффициент сопротивления демпфера $\mu = 30$ Н·с/м, коэффициент жёсткости пружины 5 $c_n = 54$ Н·м/рад. Шестерню 3 считать однородным диском.

Вариант 32. Маховик 1, представляющий собой однородный диск, связан шатуном 2 с ползуном 3, который движется в гладких горизонтальных направляющих. Пружина 4 не деформирована, когда шарнир В находится на одной вертикали с осью маховика. Составить дифференциальное уравнение движения системы и определить амплитуду вынужденных колебаний ползуна, возбуждаемых при действии на маховик пары сил с моментом $M(t) = M_0 \cdot sinpt$. Масса диска $m_1 = 19$ кг, масса шатуна $m_2 = 10$ кг, масса ползуна $m_3 = 5$ кг, коэффициент жёсткости пружины $c_n = 430$ H/м, r = 0.2 м, $M_0 = 0.558$ H м, p = 4 рад/с.

