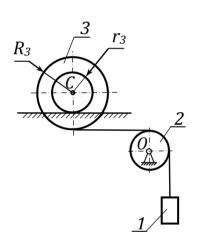

УРАВНЕНИЯ ЛАГРАНЖА ІІ РОДА


Публикуется по учебному изданию

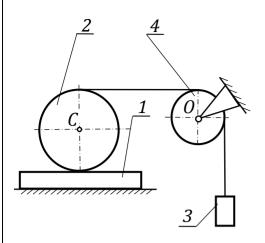
Уравнения Лагранжа второго рода: методические указания к курсовому заданию по динамике, авторы / В.И.Дронг, Г.М.Максимов, А.И.Огурцов, под ред. В.В.Дубинина. – М.: Изд-во МГТУ им. Н.Э.Баумана, 1985. Отредактировано в 2017 г. Ремизовым А. В.

1. Груз 1 массой m_1 скользит по наклонной плоскости, образующей угол α с горизонтом. К грузу прикреплен конец нерастяжимой нити, которая переброшена через блок 3 и намотана на внутреннюю ступень катка 2 радиуса r, внешняя ступень которого имеет радиус R. Каток 2 катится со скольжением по плоскости, наклоненной к горизонту под углом β . Масса катка равна m_2 , его радиус инерции ρ , коэффициент трения скольжения между катком и наклонной плоскостью равен f.

При решении задачи массами блока 3 и нити, трением скольжения между грузом 1 и плоскостью, а также трением качения и трением на оси блока пренебречь. Полагать, что нить по барабану не скользит и что вектор \overline{v}_A скорости точки A катка направлен вниз по линии наибольшего ската наклонной плоскости. Составить дифференциальные уравнения движения системы.

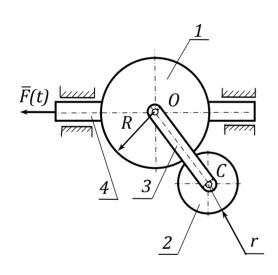
2. Груз 1 массой m_1 прикреплён к нити, которая перекинута через блок 2 массой m_2 , и другой ее конец охватывает внешнюю ступень катка 3 массой m_3 . Каток 3 движется по горизонтальному рельсу с проскальзыванием.

Составить дифференциальные уравнения движения механической системы, если сила трения скольжения катка по рельсу направлена влево. Блок 2 - однородный диск;

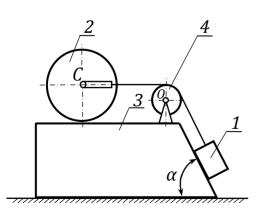

Внутренний радиус катка r , внешний радиус R, радиус инерции катка 3 относительно его оси ρ , коэффициент трения скольжения катка по рельсу f .

В начальный момент скорость точки контакта катка с плоскостью равна нулю. Моментом трения качения катка, массой нити и сопротивлением в опоре блока пренебречь.

3. Груз 1 массой m_1 прикреплен к тросу, охватывающему ступицу барабана 2 массой m_2 , который находится в зацеплении с шестерней 3 массой m_3 . Шестерня 3 жёстко связана с блоком, на который намотан трос. Другой конец троса прикреплен к оси катка 4 массой m_4 . Каток 4 движется по горизонтальному рельсу с проскальзыванием. Внутренний радиус барабана r_2 , внешний радиус R_2 , радиус инерции барабана 2 относительно его оси ρ_2 .


Блок 3 с шестерней и каток 4 - однородные диски, радиус катка R_4 , коэффициент трения скольжения катка по рельсу f. В начальный момент скорость точки контакта катка с плоскостью равна нулю. Моментом трения качения катка по рельсу, а также сопротивлением в осях пренебречь.

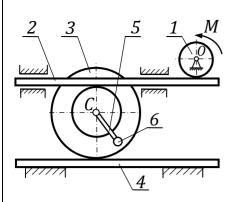
4. На однородный круглый цилиндр 2 массой m_2 , намотана нерастяжимая нить, которая переброшена через блок 4, и к её концу прикреплен груз 3 массой m_3 . Цилиндр 2 катится без скольжения по плите 1 массой m_1 , а плита скользит по горизонтальной плоскости.


При решении задачи массами блока 4 и нити, трением на оси блока, трением между плитой 1 и плоскостью, а также трением качения пренебречь.

Составить дифференциальные уравнения движения системы.

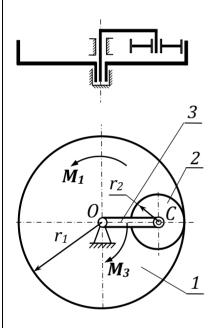
5. К 4. движущейся рейке поступательно горизонтальных направляющих, жестко прикреплена шестерня 1 радиусом R. Общая масса шестерни 1 и рейки равна m_1 . К центру шестерни 1 шарнирно прикреплено водило 3, которое несёт ось шестерни 2 массой m_2 . Шестерня 2 находится в зацеплении с шестерней 1. Механизм находится в вертикальной плоскости. К рейке приложена горизонтальная сила F(t).

Составить дифференциальные уравнения движения системы. Шестерню 2 принять за однородный диск радиуса r. Трением на осях и в направляющих, а также массой водила пренебречь.



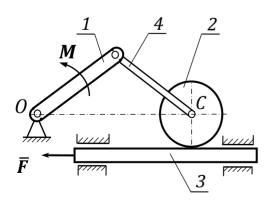
6. Призма 3 перемещается по шероховатой горизонтальной плоскости. Каток 2 катится без скольжения по верхней грани призмы 3. К оси катка прикреплен трос, который перекинут через невесомый блок 4 и другим концом прикреплен к грузу 1, скользящему по гладкой грани призмы. Грань образует с горизонтальной плоскостью угол α.

Составить дифференциальные уравнения движения данной механической системы.


В расчетах принять:

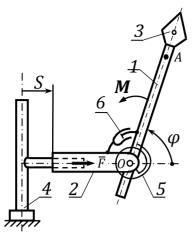
- 1) массы звеньев m_1 , m_2 , m_3 ;
- 2) угол $\alpha = \pi/3$ рад;
- 3) коэффициент трения скольжения призмы о плоскость f;
- 4) сопротивлением в осях и массой троса пренебречь.

7. Маховик 1 массой m_1 , вращающийся вокруг горизонтальной оси под действием пары сил с моментом M(t), приводит в движение горизонтальную рейку 2. Рейка 2 передает движение ступенчатому колесу 3 массой m_3 , которое катится без скольжения по неподвижной горизонтальной направляющей 4. Центр масс колеса находится в его геометрическом центре. Радиус инерции колеса относительно оси, проходящей через его центр перпендикулярно плоскостям ступеней, равен ρ . Радиусы наружной и внутренней ступеней колеса равны R_3 и r_3 соответственно. К центру колеса шарнирно прикреплён стержень 5 длиной l с грузом 6 массой m_6 на Составить дифференциальные уравнения конце. движения системы.


Считать, что зацепления рейки 2 с маховиком 1 и колесом 3 являются зубчатыми. Маховик 1 принять за однородный диск радиусом r_1 , а груз 6 - за материальную точку. Массами рейки 2 и стержня 5, а также трением качения колеса, трением в направляющих рейки 2, на оси маховика и в шарнирном соединении стержня 5 пренебречь.

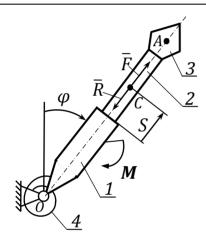
8. В дифференциальном механизме шестерня 1 массой m_1 и радиусом r_1 находится в зацеплении с подвижной шестерней 2 радиусом r_2 , ось которой закреплена на конце водила 3. Оси вращения шестерни 1, водила 3 и шестерни 2 вертикальны. К шестерне 1 и водилу 3 приложены пары сил с моментами M_1 и M_3 соответственно, а к шестерне 2 - пара сил трения, момент которой равен M_2 .

При решении задачи шестерни принять за однородные диски одинаковой толщины и плотности (масса $m_2 = m_l (r_2/r_1)^2$) . Трением в подшипниках и массой водила пренебречь.

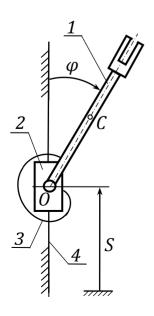

Составить дифференциальные уравнения движения механизма.

9. Кривошип 1 - однородный стержень массой m_1 , вращаясь вокруг горизонтальной оси, проходящей через точку О перпендикулярно плоскости рисунка, приводит в движение шатун 4 и шарнирно связанную с ним шестерню 2 массой m_2 . Шестерня 2 находится в зацеплении с рейкой 3 массой m_3 , которая скользит в горизонтальных направляющих. К рейке приложена горизонтальная сила \overline{F} , а к кривошипу 1 - пара сил с моментом M. Шатун 4 имеет одинаковую с кривошипом длину l.

При решении задачи шестерню 2 принять за однородный диск радиусом r. Трением в шарнирах и направляющих, а также массой шатуна 4 пренебречь.

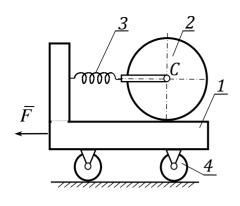

Составить дифференциальные уравнения движения системы.

10. Штанга 2 механического манипулятора, масса которой равна m_2 , движется в горизонтальных направляющих, установленных на неподвижной стойке 4. К штанге в точке О шарнирно прикреплен рычаг 1 со схватом 3. Масса рычага со схватом m_I , его центром масс является точка А (ОА = l). Момент инерции рычага со схватом относительно оси, проходящей через точку О перпендикулярно плоскости рисунка, равен J. К рычагу 1 и штанге 2 присоединены концы спиральной пружины 5 и демпфер 6. Коэффициент жесткости пружины c. Приводы манипулятора создают пару сил с постоянным моментом M, приложенную к рычагу 2, и постоянную силу \overline{F} , приложенную к штанге 2.


При решении задачи трением в направляющих и в шарнире O, а также массами пружины 5 и демпфера 6 пренебречь. Полагать, что при $\varphi=0$ пружина не деформирована и что момент силы вязкого трения относительно оси O_Z , приложенный к поршню демпфера, пропорционален угловой скорости рычага 1 ($M_C=-\mu\cdot\omega_I$, где $\mu=const>0$).

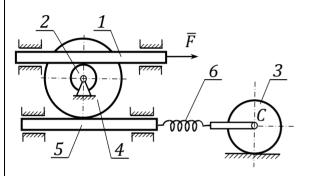
Составить дифференциальные уравнения движения системы.

11. В упрощенной модели промышленного робота к неподвижной опоре шарнирно крепится полый цилиндр 1 длиной l_I , из которого может выдвигаться штанга 2 массой m_2 и длиной l_I . На конце штанги находится схват 3, несущий деталь, которая имитируется материальной точкой А. Механизм расположен в горизонтальной плоскости. Момент инерции цилиндра 1 относительно оси шарнира равен J_I . Штанга представляет собой однородный, стержень с центром масс в точке С. К цилиндру 1 приложена пара сил с моментом M, а к штанге 2 - сила \overline{F} и сила вязкого трения $\overline{R} = -\mu \cdot \overline{v}_r$, где $\mu = const > 0$, \overline{v}_r -скорость штанги по отношению к цилиндру 1.


Цилиндр 1 соединён с неподвижной опорой спиральной пружиной 4, коэффициент жёсткости которой равен c. Принимая за обобщённые координаты системы параметры s и φ , указанные на рисунке, составить дифференциальные уравнения ее движения. В начальный момент времени пружина не деформирована. Схват вместе с деталью считать материальной точкой массы m_3 . Трением в шарнире О пренебречь.

12. Исполнительный механизм робота расположен в вертикальной плоскости и состоит из штанги 1, ползуна 2 и спиральной пружины 3. Штанга 1 вращается вокруг оси, установленной в точке O ползуна 2 и перпендикулярной плоскости чертежа. Ползун 2 перемещается вдоль вертикальной направляющей 4. Концы спиральной пружины закреплены на штанге и ползуне. Развиваемый спиральной пружиной упругий момент $M_{ynp} = c\varphi$.

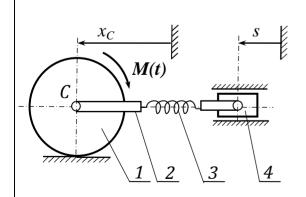
Составить дифференциальные уравнения движения системы в обобщенных координатах s и φ , где s – определяет положение ползуна 2, а φ - угол отклонения штанги от вертикального положения.


Штангу 1 считать однородным стержнем массой m_1 и длиной l. Масса ползуна $m_2.$ Трением в направляющей и в оси O пренебречь.

Четырехколесная **13.** тележка движется поступательно прямолинейно ПО шероховатой горизонтальной плоскости. Масса кузова тележки m_1 , Ha шероховатой масса каждого колеса m_4 . горизонтальной платформе тележки находится сплошной однородный цилиндрический каток 2 массой m_2 и радиусом R. Центр катка 2 соединён с кузовом тележки горизонтальной пружиной 3, коэффициент жёсткости которой равен с. Колеса тележки, а также каток 2 могут катиться по своим опорным плоскостям без скольжения.

приложена горизонтальная сила \overline{F} , а к каждому ее колесу - пара сил, момент которой равен M. Составить дифференциальные уравнения движения системы. В начальный момент времени пружина не деформирована.

Колеса тележки считать однородными дисками с радиусом r. Трением качения, а также трением на осях колес тележки пренебречь.

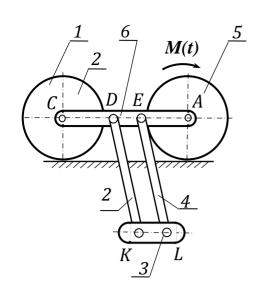


14. Зубчатая рейка 1 массой m_1 скользит под действием силы \overline{F} в горизонтальных направляющих и приводит во вращение вокруг неподвижной оси, проходящей через точку О перпендикулярно плоскости рисунка, шестерню 2 радиусом r. С шестерней 2 жёстко соединена шестерня 4 радиусом R. Масса блока шестерён m_2 , а его радиус инерции ρ . Шестерня 4 приводит в движение зубчатую рейку 5. К этой рейке прикреплен левый конец пружины 6.

Правый конец пружины прикреплен к оси однородного круглого цилиндра 3 массой m_3 , который катается без скольжения по горизонтальной плоскости. Коэффициент жёсткости пружина 6 равен c.

При решении задачи массой рейки 5 и пружины 6, трением на осях блока шестерён и катка, а такие трением качения пренебречь. Начало отсчета координаты x совместить о тем положением центра катка (точки C), при котором пружина не деформирована.

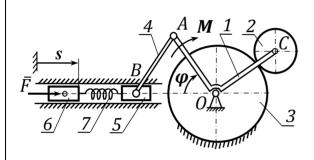
Составить дифференциальные уравнения движения системы.



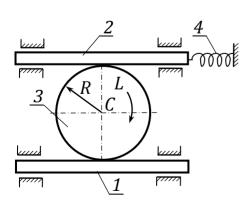
15. Однородный каток 1 массой m_1 и радиусом r, движется по горизонтальному рельсу без проскальзывания под действием пары сил с моментом M(t). Ось катка через тягу 2 и пружину 3 связана со штоком 4. Коэффициент жёсткости пружины c.

Составить дифференциальные уравнения движения системы, приняв за обобщенные координаты x_C и s, и считая, что при $x_C = 0$, s = 0 пружина не деформирована. При расчетах принять:

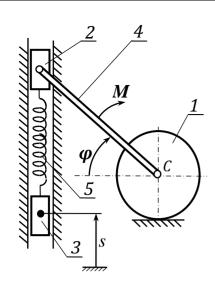
- 1) m_1 , m_2 , m_4 массы звеньев 1, 2, 4;
- 2) $F_{ynp}=c\varDelta l_{np}$, где $\varDelta l_{np}$ полная деформация пружины;


Массой пружины, трением качения колеса о рельс, а также силами сопротивления на оси катка и в направляющих штока пренебречь.

16. Два однородных круглых цилиндра 1 и 5 катаются без скольжения по горизонтальной плоскости. Масса каждого цилиндра m_1 , а радиус R. К цилиндру 5 приложена пара сил с моментом M(t). К раме 6, соединявшей оси цилиндров, шарнирно прикреплены однородные стержни 2 и 4 массы m_2 и длины l каждый. Концы этих стержней соединены спарником 3 массы m_3 , причем KL = DE.

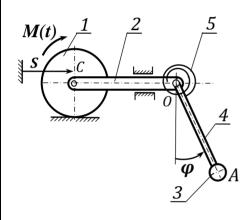

При решении задачи массой рамы 6, а также трением в шарнирах и моментами трения качения пренебречь.

Составить дифференциальные уравнения движения системы.

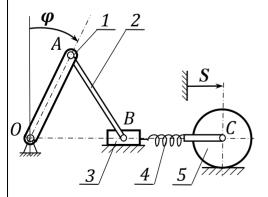


17. Коленчатый прямоугольный рычаг 1 массой m_I , вращается вокруг неподвижной горизонтальной оси в вертикальной плоскости. Правый конец рычага шарнирно связан с шестерней 2 массой m_2 и радиусом r, находящейся в зацеплении с неподвижной шестерней 3. Левый конец рычага с помощью стержня 4 соединен с ползуном 5. Ползун 5 массой m_5 связан с ползуном 6 массой m_6 посредством пружины 7, коэффициент жесткости которой

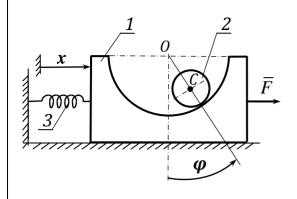
равен c. Рычаг 1 состоит из двух одинаковых однородных стержней длиной l. Длина стержня 4 также равна l. К рычагу 1 приложена пара сил с моментом M, а к ползуну 6 - горизонтальная сила \overline{F} . Ползуны 5 и 6 перемещаются в горизонтальных направляющих. Составить дифференциальные уравнения движения системы. В начальный момент времени пружина 7 не деформирована. Шестерню 2 рассматривать как однородный диск. Массой стержня 4, а также трением пренебречь. При окончательных вычислениях полагать $m_2 = 2m_1$.



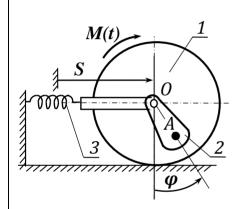
18. Рейки 1 и 2 массой m_1 и m_2 движутся в параллельных горизонтальных направляющих. Рейки находятся в зубчатом зацеплении с однородным диском 3 массой m_3 и радиусом R. Рейка соединена пружиной 4 с неподвижной опорой. Ось пружины параллельна рейкам, коэффициент жёсткости пружины c. К диску приложена пара сил с моментом L. Составить дифференциальные уравнения движения системы. В начальный момент времени пружина не деформирована.


19. Однородный диск 1 массой m_l и радиусом R катается без скольжения по горизонтальной плоскости. К центру диска шарнирно прикреплен одним своим концом стержень 4 длиной l. К стержню приложена пара сил с моментом M(t). Другой конец стержня шарнирно прикреплён к ползуну 2 массой m_2 , движущемуся в вертикальных направляющих. К ползуну 2 с помощью пружины 5, коэффициент жёсткости которой равен c, подвешен груз 3 массой m_3 .

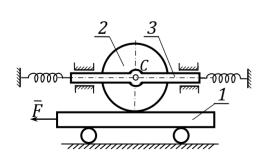
Принимая за обобщённые координаты системы параметры S и φ , указанные на рисунке, составить дифференциальные уравнения ее движения. Угол φ отсчитывается от горизонтали, а координата S груза S - от положения, занимаемого им при $\varphi = 0$. При $\varphi = 0$ и S = 0 пружина не деформирована. Трением в шарнирах и направляющих, моментом трения качения, а также массой стержня S пренебречь.


20. Однородный круглый цилиндр 1 массой m_1 и радиусом R катится без скольжения по горизонтальной плоскости. К нему приложена пара сил с моментом M(t). К оси цилиндра шарнирно прикреплен горизонтальный шток 2 массой m_2 , движущийся в горизонтальных направляющих. К штоку в точке O шарнирно прикреплен стержень 4 длины l с грузом 3 массой m_3 на конце. Концы спиральной пружины 5, коэффициент жесткости которой равен c, прикреплены к штоку 2 и к стержню 4. При нижнем вертикальном положении стержня 4 пружина не деформирована.

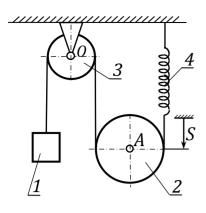
Составить дифференциальные уравнения движения системы. Массой стержня 4, а также трением в шарнирах, направляющих и моментом трения качения пренебречь.


21. Кривошип 1 - однородный стержень массой m_1 и длиной l, вращаясь вокруг оси, проходящей через точку О перпендикулярно плоскости рисунка, приводит в движение шатун 2 и ползун 3 массой m_3 . Ползун движется в горизонтальных направляющих. Шатун 2 имеет длину, одинаковую с длиной кривошипа 1. К ползуну 3 прикреплен один конец пружины 4, а другой ее конец прикреплен в точке D к оси однородного круглого цилиндра 5 массой m_5 . Цилиндр катается без скольжения по горизонтальной плоскости.

Коэффициент жесткости пружины 4 равен c. При решении задачи трением в шарнирах и направляющих и моментом трения качения, а также массами шатуна 2 и пружины 4 пренебречь. В качестве обобщенных координат выбрать φ - угол поворота кривошипа и S - перемещение оси цилиндра от положения, при котором $\varphi=0$ и пружина не деформирована. Составить дифференциальные уравнения движения системы.

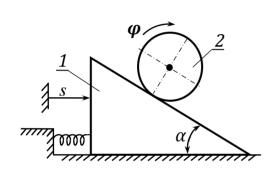

22. В брусе 1 массой m_1 сделана цилиндрическая выточка радиусом R, в которой катается без скольжения однородный круглый цилиндр 2 массой m_2 и радиусом r. Оси выточки и цилиндра параллельны. Брус движется по горизонтальной плоскости. К нему приложена горизонтальная сила $\overline{F}(t)$, направленная перпендикулярно оси выточки. Линия действия этой силы и центры масс бруса и цилиндра находятся в одной вертикальной плоскости. К брусу прикреплен конец горизонтальной пружины 3, коэффициент жесткости которой равен c. Другой конец пружины прикреплён к стене.

Принимая за обобщенные координаты системы параметры x и φ , указанные на рисунке, составить дифференциальные уравнения ее движения. При x=0 пружина не деформирована. Трением между брусом и его опорной плоскостью, а также трением качения пренебречь.

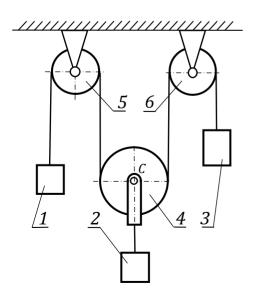


23. Однородный круглый цилиндр 1 массой m_1 и радиусом R катается без скольжения по горизонтальной плоскости. К нему приложена пара сил с моментом M(t). К оси цилиндра шарнирно прикреплен физический маятник 2 массой m_2 . Момент инерции маятника относительно оси, проходящей через точку O перпендикулярно плоскости рисунка, равен J_2 , расстояние от оси подвеса до центра масс маятника (точки A) равно h (OA = h). Кроме маятника, к оси цилиндра прикреплен конец пружины 3, коэффициент жёсткости которой равен c. Другой конец пружины прикреплен к неподвижной опоре. При решении задачи массой пружины, а также трением на оси цилиндра и моментом трения качения пренебречь.

Составить дифференциальные уравнения движения системы.



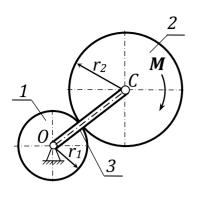
24. Платформа 1 массой m_1 , перемещается на катках по горизонтальной плоскости. Она находится в зацеплении с однородным диском 2 массой m_2 и радиусом R так, что проскальзывание между ними отсутствует. Диск 2 свободно насажен в своем центре на палец, находящийся на рейке 3, которая может перемещаться в гладких горизонтальных направляющих. Концы рейки 3 связаны с неподвижными опорами двумя одинаковыми горизонтальными пружинами, коэффициенты жёсткости которых равны c. К платформе приложена горизонтальная сила \overline{F} . Скольжение между платформой и катками, а также между катками и их опорной плоскостью отсутствует. Составить дифференциальные уравнения движения системы. В начальный момент времени $x_0 = 0$, $\varphi_0 = 0$ и пружина не деформирована. Массой катков, трением качения, а также трением на оси диска пренебречь.


25. Через блок 3 радиусом R, вращающийся вокруг неподвижной оси, проходящей через точку O перпендикулярно плоскости рисунка, переброшена нерастяжимая нить, к левому концу которой прикреплен груз 1 массой m_1 , а правый конец нити присоединен к пружине 4. Коэффициент жесткости пружины c. Нить поддерживает подвижный блок 2 массой m_2 . При решении задачи подвижный блок 2 принять за однородный диск. Полагать, что при движении системы ветви нити остаются вертикальными и что нить по блокам не скользит.

Массами нити, пружины и блока 3, а также трением на оси блока 3 пренебречь. Начало отсчета координаты S совместить с тем положением центра блока 2 (точки A), при котором пружина не деформирована. Составить дифференциальные уравнения движения системы.

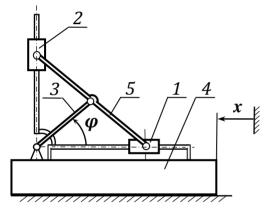
26. По горизонтальной плоскости двинется призма массой m_1 . К призме прикреплён один конец горизонтальной пружины 3, коэффициент жесткости которой равен c. Второй конец этой пружины прикреплен к стене. По наклонной грани призмы, образующей угол $\alpha = 60^\circ$ с горизонтом, катится без скольжения однородный круглый цилиндр 2 массой m_2 .

В начальный момент времени пружина была не деформирована. Составить дифференциальные уравнения движения системы. Моментом трения качения и трением между призмой 1 и опорной плоскостью пренебречь.

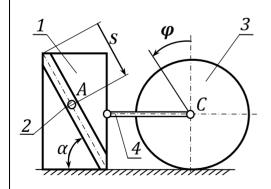

27. Через блоки 5 и 6 перекинут трос, поддерживающий подвижный блок 4, к оси которого подвешен груз 2. К концам троса прикреплены грузы 1 и 3.

Составить дифференциальные уравнения движения данной механической системы.

При расчетах принять;

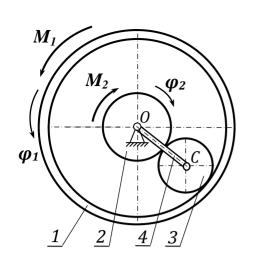

- I) массы звеньев I, 2, 3, 4 m_1 , m_2 , m_3 , m_4 соответственно;
 - 2) массы каждого из блоков 5 и 6 равны m;
- 3) блоки 4, 5, 6 однородные диски. Трением на осях блоков, растяжением и массой троса пренебречь.

Трос по блокам не скользит

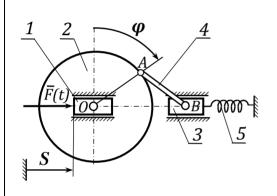

28. Планетарный механизм, расположенный в горизонтальной плоскости, состоит из шестерён 1 и 2, представляющих однородные диски массами m_1 и m_2 и радиусами r и R, связанных водилом 3 в виде однородного стержня длиной l=r+R и массой m_3 . К планетарной шестерне 2 приложен вращающий момент M.

Составить дифференциальные уравнения лвижения системы.

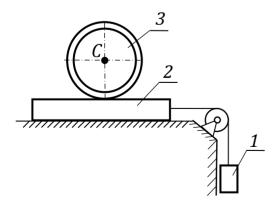
29. Механизм эллипсографа, находящийся в вертикальной плоскости, установлен на подставке 4, которая перемещается по гладкой горизонтальной плоскости. Массы ползунов 1 и 2 равны $m_1 = m_2$, масса подставки 4 - m_4 , кривошип 3 - однородный стержень длиной l и массой m_3 , длина линейки 5 равна 2l.


Составить дифференциальные уравнения движения механической системы, приняв за обобщенные координаты x и φ . Трение скольжения в направлявших ползунов и сопротивление в осях отсутствует. Массой линейки 5 пренебречь.

30. Материальная точка А массой m_2 опускается вниз по прямолинейному пазу тела 1. Паз расположен в вертикальной плоскости и наклонен к горизонту под углом $\alpha = 60^{\circ}$. Тело 1 с массой m_1 опирается на шероховатую горизонтальную плоскость, коэффициент трения скольжения равен f. С телом 1 с помощью горизонтального стержня 4 связан сплошной однородный цилиндр 3 массой m_3 и радиусом R, который может кататься по опорной плоскости без скольжения. Принимая за обобщенные координаты системы параметры S и φ , указанные на рисунке, составить дифференциальные уравнения её движения.


Массой стержня 4 пренебречь. Трением между точкой A и поверхностью паза, а также трением качения и трением в шарнирных соединениях пренебречь.

При окончательных вычислениях полагать $m_1=4m_2$, $m_3=2m_2,\,f=0,2.$


31. В дифференциальном механизме шестерня 1 массой m_1 и шестерня 2 массой m_2 , а также водило 4 свободно насажены на общую неподвижную горизонтальную ось, проходящую через точку О. Радиусы шестерён 1 и 2 равны r_1 и r_2 соответственно. Между шестернями 1 и 2 расположена шестерня 3 массой m_3 , находящаяся с ними в зацеплении. К шестерне 1 приложена пара сил с моментом M_{I} , а к шестерне 2 - пара сил с моментом M_2 . Составить дифференциальные уравнения движения системы, принимая шестерни 2 и 3 за однородные диски, а шестерню 1 - за однородное тонкое кольцо. Трением на оси шестерен 1 и 2 и массой водила 4 пренебречь.

При окончательных вычислениях полагать $r_1 = 2r_2 \ = 4r_3, \ m_2 = m_3 = 4m_1$

32. К ползуну 1 массой m_1 , который двигается в горизонтальных направляющих, шарнирно прикреплён однородный диск 2 массой m_2 и радиусом r. Диск 2 через шатун 4 приводит в движение ползун 3 массой m_3 . Длина шатуна 4 равна радиусу диска 2. К ползуну 3 прикреплен левый конец горизонтальной пружины 5. Правый конец этой пружины закреплен неподвижно. Коэффициент жёсткости пружины c. К ползуну 1 приложена горизонтальная сила $\overline{F}(t)$. В качестве обобщенных координат выбрать: φ - угол поворота диска 2 и S - перемещение ползуна I. Полагать, что при $\varphi = 0$ и S = 0 пружина 5 не деформирована.

Составить дифференциальные уравнения движения системы.

33. Груз 1 массы m_1 посредством троса, перекинутого через невесомый блок, приводит в движение плиту 2 массой m_2 , лежащую на гладкой горизонтальной поверхности. На плите расположен тонкостенный цилиндр 3 массой m_3 и радиуса r, который может катиться без проскальзывания по поверхности плиты. Коэффициент трения качения равен δ . Применив общее уравнение динамики, определить ускорение оси C цилиндра.